Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
Fe(acac)3 is prepared by treating freshly precipitated Fe(OH)3 with acetylacetone.
Fe(OH)3 + 3 HC5H7O2 → Fe(C5H7O2)3 + 3 H2O
Structure and properties
Fe(acac)3 is an octahedral complex with six equivalent Fe-O bonds with bond distances of about 2.00 Å. The regular geometry is consistent with a high-spin Fe core with sp3d2 hybridization. As the metal orbitals are all evenly occupied the complex is not subject to Jahn-Teller distortions and thus adopts a D3molecular symmetry. In contrast, the related metal acetylacetonate Mn(acac)3 adopts a more distorted octahedral structure. The 5 unpaired d-electrons also result in the complex being paramagnetic, with a magnetic moment of 5.90 μB.
Fe(acac)3 possesses helical chirality. The Δ- and Λ-enantiomers slowly inter-convert via Bailar and Ray–Dutt twists. The rate of interconversion is sufficiently slow to allow its enantiomers to be partially resolved.
Reactions
Fe(acac)3 has been examined as a precatalyst and reagent in organic chemistry, although the active iron-containing species is usually unidentified in these processes. In one instance, Fe(acac)3 was shown to promote cross-coupling a diene to an olefin. Fe(acac)3 catalyzes the dimerization of isoprene to a mixture of 1,5-dimethyl-1,5-cyclooctadiene and 2,5-dimethyl-1,5-cyclooctadiene.
Fe(acac)3 also catalyzes the ring-opening polymerization of 1,3-benzoxazine. Beyond the area of polymerization, Fe(acac)3 has been found to catalyze the reaction of N-sulfonyl oxaziridines with olefins to form 1,3-oxazolidine products.
Anders Lennartson "Optical resolution and racemisation of " Inorganica Chimica Acta 2011, vol. 365, pp. 451–453. doi:10.1016/j.ica.2010.07.066
Takacs, J. A., L.; Madhavan, G.V.; Creswell, M.; Seely, F.; Devroy, W. (1986). "Iron-Catalyzed Aminohydroxylation of Olefins". Organometallics. 5 (11): 2395–2398. doi:10.1021/om00142a044.{{cite journal}}: CS1 maint: multiple names: authors list (link)
Sudo, A.; Hirayama, Shoji; Endo, Takeshi (2010). "Highly efficient catalysts-acetylacetonato complexes of transition metals in the 4th period for ring-opening polymerization of 1,3-benzoxazine". Journal of Polymer Science Part A: Polymer Chemistry. 48 (2): 479. Bibcode:2010JPoSA..48..479S. doi:10.1002/pola.23810.