JP-10 fuel (Jet Propellant 10) is a jet fuel, specified and used mainly as fuel in missiles. Being designed for military purposes, it is not a kerosene based fuel.
Developed to be a gas turbine fuel for cruise missiles, it contains mainly exo-tetrahydrodicyclopentadiene (a synthetic fuel), and adamantane. However, it is usually classed as a single component fuel, as well as a hydrocarbon. It is produced by catalytic hydrogenation of dicyclopentadiene and then isomerization.
It superseded JP-9, which is a mixture of norbornadiene-based RJ-5 fuel, tetrahydrodicyclopentadiene and methylcyclohexane, because of a lower temperature service limit and about four times lower price. Since the lack of volatile methylcyclohexane makes its ignition difficult, a separate priming fluid PF-1 with about 10-12% of this additive is required for the engine start-up. Its main use is in the Tomahawk missiles.
The Russian equivalent is called detsilin.
Chemical properties of JP-10 fuel
- Chemical formula: C10H16
- H/C (Hydrogen/Carbon) ratio (mole): 1.6
- Average molecular weight (g/mol): 136.2
- LHV (lower heating value) (MJ/kg): 43.0
Uses
JP-10 absorbs heat energy, so is endothermic with a relatively high density of 940 kg/m. It has a low freezing point of less than −110 °C (−166 °F) and the flash point is 130 °F (54 °C). The high energy density of 39.6 MJ/L makes it ideal for military aerospace applications - its primary use. The ignition and burn chemistry has been extensively studied. The exo isomer also has a low freezing point. Its other properties have also been studied extensively.
Even though its uses are mainly for the military, the relatively high cost has meant research has been undertaken to find lower costs routes including the use of cellulosic materials.
Further research
Current and past areas of research focus on:
- The pyrolysis and kinetics of the fuel.
- Catalytic addition of nanoparticles such as those based on cerium(IV) oxide.
- Catalysis for the endo to exo isomerisation.
- Use of additives in JP-10 for various enhancements.
References
- Aviation Fuel Properties (PDF). Coordinating Research Council. 1983. p. 3. CRC Report Nº 530. Archived from the original (PDF) on 2012-07-22. Retrieved 2023-12-06.
- Ciccarelli, G.; Card, J. (February 2006). "Detonation in Mixtures of JP-10 Vapor and Air". AIAA Journal. 44 (2): 362–367. Bibcode:2006AIAAJ..44..362C. doi:10.2514/1.18582. ISSN 0001-1452.
- ^ Martel, Charles R. (1987). Military Jet Fuels, 1944-1987. Aero Propulsion Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems Command, United States Air Force. p. 10.
- Coggeshall, Katharine. "Revolutionizing Tomahawk fuel". Los Alamos National Laboratory. Archived from the original on 21 May 2020. Retrieved 20 May 2020.
- ^ "JP10 specs". web.stanford.edu. Retrieved 2024-05-20.
- "h/c ratio - Google Search". www.google.com. Retrieved 2024-05-20.
- "Heat of combustion", Misplaced Pages, 2024-05-08, retrieved 2024-05-20
- "Exo-tricyclo[5.2.1.0(2.6)]decane". webbook.nist.gov. Retrieved 2023-10-03.
- Li, S. C.; Varatharajan, B.; Williams, F. A. (December 2001). "Chemistry of JP-10 Ignition". AIAA Journal. 39 (12): 2351–2356. Bibcode:2001AIAAJ..39.2351L. doi:10.2514/2.1241. ISSN 0001-1452.
- Davidson, D. F.; Horning, D. C.; Herbon, J. T.; Hanson, R. K. (2000-01-01). "Shock tube measurements of JP-10 ignition". Proceedings of the Combustion Institute. 28 (2): 1687–1692. Bibcode:2000PComI..28.1687D. doi:10.1016/S0082-0784(00)80568-8. ISSN 1540-7489.
- Herbinet, Olivier; Sirjean, Baptiste; Bounaceur, Roda; Fournet, René; Battin-Leclerc, Frédérique; Scacchi, Gérard; Marquaire, Paul-Marie (2006-10-01). "Primary Mechanism of the Thermal Decomposition of Tricyclodecane". The Journal of Physical Chemistry A. 110 (39): 11298–11314. Bibcode:2006JPCA..11011298H. doi:10.1021/jp0623802. ISSN 1089-5639. PMID 17004739.
- Wu, Junjun; Gao, Lu Gem; Ning, Hongbo; Ren, Wei; Truhlar, Donald G. (2020-06-01). "Direct dynamics of a large complex hydrocarbon reaction system: The reaction of OH with exo-tricyclodecane (the main component of Jet Propellant-10)". Combustion and Flame. 216: 82–91. Bibcode:2020CoFl..216...82W. doi:10.1016/j.combustflame.2020.02.019. ISSN 0010-2180. S2CID 216384271.
- "Exo-tricyclo[5.2.1.0(2.6)]decane". Cheméo. Retrieved 2023-10-03.
- Seiser, R.; Niemann, U.; Seshadri, K. (2011-01-01). "Experimental study of combustion of n-decane and JP-10 in non-premixed flows". Proceedings of the Combustion Institute. 33 (1): 1045–1052. Bibcode:2011PComI..33.1045S. doi:10.1016/j.proci.2010.06.078. ISSN 1540-7489.
- Tao, Yujie; Xu, Rui; Wang, Kun; Shao, Jiankun; Johnson, Sarah E.; Movaghar, Ashkan; Han, Xu; Park, Ji-Woong; Lu, Tianfeng; Brezinsky, Kenneth; Egolfopoulos, Fokion N.; Davidson, David F.; Hanson, Ronald K.; Bowman, Craig T.; Wang, Hai (2018-12-01). "A Physics based approach to modeling real fuel combustion chemistry III Reaction kinetic model of JP10". Combustion and Flame. 198: 466–476. Bibcode:2018CoFl..198..466T. doi:10.1016/j.combustflame.2018.08.022. ISSN 0010-2180. S2CID 104745782.
- Li, Heng; Liu, Guozhu; Jiang, Rongpei; Wang, Li; Zhang, Xiangwen (2015-05-01). "Experimental and kinetic modeling study of exo-TCD pyrolysis under low pressure". Combustion and Flame. 162 (5): 2177–2190. Bibcode:2015CoFl..162.2177L. doi:10.1016/j.combustflame.2015.01.015. ISSN 0010-2180.
- Goh, K. H. H.; Geipel, P.; Hampp, F.; Lindstedt, R. P. (2013-01-01). "Regime transition from premixed to flameless oxidation in turbulent JP-10 flames". Proceedings of the Combustion Institute. 34 (2): 3311–3318. Bibcode:2013PComI..34.3311G. doi:10.1016/j.proci.2012.06.173. ISSN 1540-7489.
- Li, Guangyi; Hou, Baolin; Wang, Aiqin; Xin, Xuliang; Cong, Yu; Wang, Xiaodong; Li, Ning; Zhang, Tao (2019-08-26). "Making JP-10 Superfuel Affordable with a Lignocellulosic Platform Compound". Angewandte Chemie International Edition. 58 (35): 12154–12158. doi:10.1002/anie.201906744. ISSN 1433-7851.
- Chenoweth, Kimberly; van Duin, Adri C. T.; Dasgupta, Siddharth; Goddard III, William A. (2009-03-05). "Initiation Mechanisms and Kinetics of Pyrolysis and Combustion of JP-10 Hydrocarbon Jet Fuel". The Journal of Physical Chemistry A. 113 (9): 1740–1746. Bibcode:2009JPCA..113.1740C. doi:10.1021/jp8081479. ISSN 1089-5639.
- Zhong, Bei-jing; Zeng, Zhao-mei; Zhang, Hou-zhen (2022-03-15). "An experimental and kinetic modeling study of JP-10 combustion". Fuel. 312: 122900. Bibcode:2022Fuel..31222900Z. doi:10.1016/j.fuel.2021.122900. ISSN 0016-2361.
- Van Devener, Brian; Anderson, Scott L. (2006-09-01). "Breakdown and Combustion of JP-10 Fuel Catalyzed by Nanoparticulate CeO 2 and Fe 2 O 3". Energy & Fuels. 20 (5): 1886–1894. doi:10.1021/ef060064g. ISSN 0887-0624.
- Huang, Ming-Yu; Wu, Jung-Chung; Shieu, Fuh-Sheng; Lin, Jiang-Jen (2011-03-01). "Preparation of high energy fuel JP-10 by acidity-adjustable chloroaluminate ionic liquid catalyst". Fuel. 90 (3): 1012–1017. Bibcode:2011Fuel...90.1012H. doi:10.1016/j.fuel.2010.11.041. ISSN 0016-2361.
- Xing, Enhui; Mi, Zhentao; Xin, Chengwei; Wang, Li; Zhang, Xiangwen (2005-04-20). "Endo- to exo-isomerization of tetrahydrodicyclopentadiene catalyzed by commercially available zeolites". Journal of Molecular Catalysis A: Chemical. 231 (1): 161–167. doi:10.1016/j.molcata.2005.01.015. ISSN 1381-1169.
- E, Xiu-tian-feng; Pan, Lun; Zhang, Xiangwen; Zou, Ji-Jun (2020-09-15). "Influence of quadricyclane additive on ignition and combustion properties of high-density JP-10 fuel". Fuel. 276: 118047. Bibcode:2020Fuel..27618047E. doi:10.1016/j.fuel.2020.118047. ISSN 0016-2361.
- Chung, H. S.; Chen, C. S. H.; Kremer, R. A.; Boulton, J. R.; Burdette, G. W. (1999-05-01). "Recent Developments in High-Energy Density Liquid Hydrocarbon Fuels". Energy & Fuels. 13 (3): 641–649. doi:10.1021/ef980195k. ISSN 0887-0624.
Further reading
- Schmidt, Eckart W. (2022). "Jet Fuel JP-10". Jet Fuels. Encyclopedia of Liquid Fuels. De Gruyter. pp. 3545–3578. doi:10.1515/9783110750287-030. ISBN 978-3-11-075028-7.
This aviation-related article is a stub. You can help Misplaced Pages by expanding it. |