In mathematics, the Jacobi zeta function Z (u ) is the logarithmic derivative of the Jacobi theta function Θ(u). It is also commonly denoted as
zn
(
u
,
k
)
{\displaystyle \operatorname {zn} (u,k)}
Θ
(
u
)
=
Θ
4
(
π
u
2
K
)
{\displaystyle \Theta (u)=\Theta _{4}\left({\frac {\pi u}{2K}}\right)}
Z
(
u
)
=
∂
∂
u
ln
Θ
(
u
)
{\displaystyle Z(u)={\frac {\partial }{\partial u}}\ln \Theta (u)}
=
Θ
′
(
u
)
Θ
(
u
)
{\displaystyle ={\frac {\Theta '(u)}{\Theta (u)}}}
Z
(
ϕ
|
m
)
=
E
(
ϕ
|
m
)
−
E
(
m
)
K
(
m
)
F
(
ϕ
|
m
)
{\displaystyle Z(\phi |m)=E(\phi |m)-{\frac {E(m)}{K(m)}}F(\phi |m)}
Where E, K, and F are generic Incomplete Elliptical Integrals of the first and second kind. Jacobi Zeta Functions being kinds of Jacobi theta functions have applications to all their relevant fields and application.
zn
(
u
,
k
)
=
Z
(
u
)
=
∫
0
u
dn
2
v
−
E
K
d
v
{\displaystyle \operatorname {zn} (u,k)=Z(u)=\int _{0}^{u}\operatorname {dn} ^{2}v-{\frac {E}{K}}dv}
This relates Jacobi's common notation of,
dn
u
=
1
−
m
sin
θ
2
{\displaystyle \operatorname {dn} {u}={\sqrt {1-m\sin {\theta }^{2}}}}
,
sn
u
=
sin
θ
{\displaystyle \operatorname {sn} u=\sin {\theta }}
,
cn
u
=
cos
θ
{\displaystyle \operatorname {cn} u=\cos {\theta }}
. to Jacobi's Zeta function.
Some additional relations include ,
zn
(
u
,
k
)
=
π
2
K
Θ
1
′
π
u
2
K
Θ
1
π
u
2
K
−
cn
u
dn
u
sn
u
{\displaystyle \operatorname {zn} (u,k)={\frac {\pi }{2K}}{\frac {\Theta _{1}'{\frac {\pi u}{2K}}}{\Theta _{1}{\frac {\pi u}{2K}}}}-{\frac {\operatorname {cn} {u}\,\operatorname {dn} {u}}{\operatorname {sn} {u}}}}
zn
(
u
,
k
)
=
π
2
K
Θ
2
′
π
u
2
K
Θ
2
π
u
2
K
−
sn
u
dn
u
cn
u
{\displaystyle \operatorname {zn} (u,k)={\frac {\pi }{2K}}{\frac {\Theta _{2}'{\frac {\pi u}{2K}}}{\Theta _{2}{\frac {\pi u}{2K}}}}-{\frac {\operatorname {sn} {u}\,\operatorname {dn} {u}}{\operatorname {cn} {u}}}}
zn
(
u
,
k
)
=
π
2
K
Θ
3
′
π
u
2
K
Θ
3
π
u
2
K
−
k
2
sn
u
cn
u
dn
u
{\displaystyle \operatorname {zn} (u,k)={\frac {\pi }{2K}}{\frac {\Theta _{3}'{\frac {\pi u}{2K}}}{\Theta _{3}{\frac {\pi u}{2K}}}}-k^{2}{\frac {\operatorname {sn} {u}\,\operatorname {cn} {u}}{\operatorname {dn} {u}}}}
zn
(
u
,
k
)
=
π
2
K
Θ
4
′
π
u
2
K
Θ
4
π
u
2
K
{\displaystyle \operatorname {zn} (u,k)={\frac {\pi }{2K}}{\frac {\Theta _{4}'{\frac {\pi u}{2K}}}{\Theta _{4}{\frac {\pi u}{2K}}}}}
References
^ Gradshteyn, Ryzhik, I.S., I.M. "Table of Integrals, Series, and Products" (PDF). booksite.com . {{cite web }}
: CS1 maint: multiple names: authors list (link )
Abramowitz, Milton; Stegun, Irene A. (2012-04-30). Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables . Courier Corporation. ISBN 978-0-486-15824-2 .
Weisstein, Eric W. "Jacobi Zeta Function" . mathworld.wolfram.com . Retrieved 2019-12-02.
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑