Misplaced Pages

Josephson junction count

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Number of Josephson junctions on a superconducting integrated circuit chip
Photograph of the D-Wave TwoX "Washington" quantum annealing processor chip mounted and wire-bonded in a sample holder. This chip was introduced in 2015 and includes 128,472 Josephson junctions.

The Josephson junction count is the number of Josephson junctions on a superconducting integrated circuit chip. Josephson junctions are active circuit elements in superconducting circuits. The Josephson junction count is a measure of circuit or device complexity, similar to the transistor count used for semiconductor integrated circuits.

Examples of circuits using Josephson junctions include digital circuits based on SFQ logic (e.g., RSFQ, RQL, adiabatic quantum flux parametron), superconducting quantum computing circuits, superconducting analog circuits, etc.

Integrated circuits

The superconducting integrated circuits listed here must have been fabricated and tested, but are not required to be commercially available. Chip area includes the full extent of the chip.

Reference Description Junction
count
Date Maker Process Circuit
Chip
RSFQ NOT gate 13 1987 Moscow State U. 10 μm, 5 MA/m, 2 Nb 1.1 ?
CORE1α6 RSFQ microprocessor, 8 bit 6,319 2004 NEC 2 μm, 25 MA/m 10.9 ?
SCRAM2 RSFQ microprocessor, 8 bit 8,197 2006 SRL 2 μm, 25 MA/m 15.3 25
CORE1γ RSFQ microprocessor, 8 bit 22,302 2007 ISTEC 2 μm, 25 MA/m 40.45 64
Rainier RSFQ, 128 qubit QA processor 23,360 2010 D-Wave, SVTC 250 nm, 2.5 MA/m, 6 Nb 8 32
Vesuvius SFQ, 512 qubit QA processor 96,000 2012 D-Wave, SVTC 250 nm, 2.5 MA/m, 6 Nb 8 162
RSFQ, 16-bit adder 12,785 2012 SBU, AIST 1 μm, 100 MA/m, 10 Nb 8.5 29.75
8,192 bit shift register 32,800 2014 SBU, MIT-LL 500 nm, 100 MA/m, 8 Nb 9 25
Washington (W1K) SFQ, 2048 qubit QA processor 128,472 2015 D-Wave, Cypress 250 nm, 2.5 MA/m, 6 Nb 30.3 136
RQL, 2 shift registers 72,800 2015 NGC, MIT-LL 500 nm, 100 MA/m, 8 Nb 9 25
16000 bit shift register 65,000 2017 SBU, MIT-LL 500 nm, 100 MA/m, 8 Nb 12 25
36000 bit shift register 144,000 2017 SBU, MIT-LL 350 nm, 100 MA/m, 8 Nb 15 25
202280 bit shift register 809,150 2017 SBU, MIT-LL 350 nm, 100 MA/m, 8 Nb 64 100
Pegasus P16 SFQ, 5640 qubit QA processor 1,030,000 2020 D-Wave, SkyWater Technology 250 nm, 2.5 MA/m, 6 Nb 70.6 ?

Maker column may include organizations that designed and fabricated the chip.

Process column information: minimum linewidth, Josephson junction critical current density, superconducting layer number and materials. Conversions for units of critical current density: 1 MA/m = 1 μA/μm = 100 A/cm.

Graphs are unavailable due to technical issues. Updates on reimplementing the Graph extension, which will be known as the Chart extension, can be found on Phabricator and on MediaWiki.org.
Graphs are unavailable due to technical issues. Updates on reimplementing the Graph extension, which will be known as the Chart extension, can be found on Phabricator and on MediaWiki.org.

Memory

Memory is an electronic data storage device, often used as computer memory, on a single integrated circuit chip. The superconducting integrated circuits listed here must have been fabricated and tested, but are not required to be commercially available. Chip area includes the full extent of the chip.

Reference Description Junction
count
Date Maker Process Circuit
Chip
1024 bit ROM, NbN/MgO/NbN junctions 5,943 1990 Electrotechnical Lab, Japan 3 μm, 5.6 MA/m, 2 Nb + 1 Pb-In ? 17.25
4096 bit RAM 23,488 2005 ISTEC 1 μm, 100 MA/m, 10 Nb 5.5 ?

References

  1. Koshelets V, Likharev K, Migulin V, Mukhanov O, Ovsyannikov G, Semenov V, Serpuchenko I, Vystavkin A (1987). "Experimental realization of a resistive single flux quantum logic circuit". IEEE Trans. Magn. 23 (2): 755–758. Bibcode:1987ITM....23..755K. doi:10.1109/TMAG.1987.1064953.
  2. Tanaka M, Kondo T, Nakajima N, Kawamoto T, Yamanashi Y, Kamiya Y, Akimoto A, Fujimaki A, Hayakawa H, Yoshikawa N, Terai H, Hashimoto Y, Yorozu S (2005). "Demonstration of a single-flux-quantum microprocessor using passive transmission lines". IEEE Trans. Appl. Supercond. 15 (2): 400–404. Bibcode:2005ITAS...15..400T. doi:10.1109/TASC.2005.849860. hdl:10131/899. S2CID 21115527.
  3. Nobumori Y, Nishigai T, Nakamiya K, Yoshikawa N, Fujimaki A, Terai H, Yorozu S (2007). "Design and Implementation of a Fully Asynchronous SFQ Microprocessor: SCRAM2". IEEE Trans. Appl. Supercond. 17 (2): 478–481. Bibcode:2007ITAS...17..478N. doi:10.1109/TASC.2007.898658. hdl:10131/4241. S2CID 42842976.
  4. Tanaka M, Yamanashi Y, Irie N, Park H-J, Iwasaki S, Takagi K, Taketomi K, Fujimaki A, Yoshikawa N, Terai H, Yorozu S (2007). "Design and implementation of a pipelined 8 bit-serial single-flux-quantum microprocessor with cache memories". Supercond. Sci. Technol. 20 (11): S305–S309. Bibcode:2007SuScT..20S.305T. doi:10.1088/0953-2048/20/11/S01. S2CID 121079166.
  5. Johnson MW, Bunyk P, Maibaum F, Tolkacheva E, Berkley AJ, Chapple EM, Harris R, Johansson J, Lanting T, Perminov I, Ladizinsky E, Oh T, Rose G (2010). "A scalable control system for a superconducting adiabatic quantum optimization processor". Supercond. Sci. Technol. 23 (6): 065004. arXiv:0907.3757. Bibcode:2010SuScT..23f5004J. doi:10.1088/0953-2048/23/6/065004. S2CID 16656122.
  6. Bunyk PI, Hoskinson EM, Johnson MW, Tolkacheva E, Altomare F, Berkley AJ, Harris R, Hilton JP, Lanting T, Przybysz AJ, Whittaker J (2014). "Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor". IEEE Trans. Appl. Supercond. 24 (4): 1700110. arXiv:1401.5504. Bibcode:2014ITAS...2418294B. doi:10.1109/TASC.2014.2318294. S2CID 44902153.
  7. Dorojevets M, Ayala CL, Yoshikawa N, Fujimaki A (2010). "16-Bit Wave-Pipelined Sparse-Tree RSFQ Adder". IEEE Trans. Appl. Supercond. 23 (3): 1700605. doi:10.1109/TASC.2012.2233846. S2CID 24955156.
  8. Semenov VK, Polyakov YA, Tolpygo SK (2015). "New AC-Powered SFQ Digital Circuits". IEEE Trans. Appl. Supercond. 25 (3): 1–7. arXiv:1412.6552. Bibcode:2015ITAS...2582665S. doi:10.1109/TASC.2014.2382665. S2CID 29766710.
  9. Herr QP, Osborne J, Stoutimore MJA, Hearne H, Selig R, Vogel J, Min E, Talanov VV, Herr AY (2015). "Reproducible operating margins on a 72 800-device digital superconducting chip". Supercond. Sci. Technol. 28 (12): 124003. arXiv:1510.01220. Bibcode:2015SuScT..28l4003H. doi:10.1088/0953-2048/28/12/124003. S2CID 10139340.
  10. ^ Semenov VK, Polyakov YA, Tolpygo SK (2017). "AC-biased shift registers as fabrication process benchmark circuits and flux trapping diagnostic tool". IEEE Trans. Appl. Supercond. 27 (4): 1301409. arXiv:1701.03837. Bibcode:2017ITAS...2769585S. doi:10.1109/TASC.2017.2669585. S2CID 5883687.
  11. Aoyagi M, Nakagawa H, Kurosawa I, Takada S (1991). "Josephson LSI fabrication technology using NbN/MgO/NbN tunnel junctions". IEEE Trans. Magn. 27 (2): 3180–3183. Bibcode:1991ITM....27.3180A. doi:10.1109/20.133887.
  12. Nagasawa S, Satoh T, Hinode K, Kitagawa Y, Hidaka M (2007). "Yield Evaluation of 10-kA/cm² Nb Multi-Layer Fabrication Process Using Conventional Superconducting RAMs". IEEE Trans. Appl. Supercond. 17 (2): 177–180. Bibcode:2007ITAS...17..177N. doi:10.1109/TASC.2007.898050. S2CID 44057953.
Categories: