Misplaced Pages

Kähler quotient

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, specifically in complex geometry, the Kähler quotient of a Kähler manifold X {\displaystyle X} by a Lie group G {\displaystyle G} acting on X {\displaystyle X} by preserving the Kähler structure and with moment map μ : X g {\displaystyle \mu :X\to {\mathfrak {g}}^{*}} (with respect to the Kähler form) is the quotient

μ 1 ( 0 ) / G . {\displaystyle \mu ^{-1}(0)/G.}

If G {\displaystyle G} acts freely and properly, then μ 1 ( 0 ) / G {\displaystyle \mu ^{-1}(0)/G} is a new Kähler manifold whose Kähler form is given by the symplectic quotient construction.

By the Kempf-Ness theorem, a Kähler quotient by a compact Lie group G {\displaystyle G} is closely related to a geometric invariant theory quotient by the complexification of G {\displaystyle G} .

See also

References

  1. Hitchin, N. J.; Karlhede, A.; Lindström, U.; Roček, M. (1987), "Hyper-Kähler metrics and supersymmetry", Communications in Mathematical Physics, 108 (4): 535–589, doi:10.1007/BF01214418, ISSN 0010-3616, MR 0877637
  2. *Mumford, David; Fogarty, J.; Kirwan, F. (1994), Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) , vol. 34 (3rd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-56963-3, MR 1304906
Category: