In physics and mathematics , the κ-Poincaré algebra , named after Henri Poincaré , is a deformation of the Poincaré algebra into a Hopf algebra . In the bicrossproduct basis, introduced by Majid-Ruegg its commutation rules reads:
[
P
μ
,
P
ν
]
=
0
{\displaystyle =0}
[
R
j
,
P
0
]
=
0
,
[
R
j
,
P
k
]
=
i
ε
j
k
l
P
l
,
[
R
j
,
N
k
]
=
i
ε
j
k
l
N
l
,
[
R
j
,
R
k
]
=
i
ε
j
k
l
R
l
{\displaystyle =0,\;=i\varepsilon _{jkl}P_{l},\;=i\varepsilon _{jkl}N_{l},\;=i\varepsilon _{jkl}R_{l}}
[
N
j
,
P
0
]
=
i
P
j
,
[
N
j
,
P
k
]
=
i
δ
j
k
(
1
−
e
−
2
λ
P
0
2
λ
+
λ
2
|
P
→
|
2
)
−
i
λ
P
j
P
k
,
[
N
j
,
N
k
]
=
−
i
ε
j
k
l
R
l
{\displaystyle =iP_{j},\;=i\delta _{jk}\left({\frac {1-e^{-2\lambda P_{0}}}{2\lambda }}+{\frac {\lambda }{2}}|{\vec {P}}|^{2}\right)-i\lambda P_{j}P_{k},\;=-i\varepsilon _{jkl}R_{l}}
Where
P
μ
{\displaystyle P_{\mu }}
are the translation generators,
R
j
{\displaystyle R_{j}}
the rotations and
N
j
{\displaystyle N_{j}}
the boosts.
The coproducts are:
Δ
P
j
=
P
j
⊗
1
+
e
−
λ
P
0
⊗
P
j
,
Δ
P
0
=
P
0
⊗
1
+
1
⊗
P
0
{\displaystyle \Delta P_{j}=P_{j}\otimes 1+e^{-\lambda P_{0}}\otimes P_{j}~,\qquad \Delta P_{0}=P_{0}\otimes 1+1\otimes P_{0}}
Δ
R
j
=
R
j
⊗
1
+
1
⊗
R
j
{\displaystyle \Delta R_{j}=R_{j}\otimes 1+1\otimes R_{j}}
Δ
N
k
=
N
k
⊗
1
+
e
−
λ
P
0
⊗
N
k
+
i
λ
ε
k
l
m
P
l
⊗
R
m
.
{\displaystyle \Delta N_{k}=N_{k}\otimes 1+e^{-\lambda P_{0}}\otimes N_{k}+i\lambda \varepsilon _{klm}P_{l}\otimes R_{m}.}
The antipodes and the counits :
S
(
P
0
)
=
−
P
0
{\displaystyle S(P_{0})=-P_{0}}
S
(
P
j
)
=
−
e
λ
P
0
P
j
{\displaystyle S(P_{j})=-e^{\lambda P_{0}}P_{j}}
S
(
R
j
)
=
−
R
j
{\displaystyle S(R_{j})=-R_{j}}
S
(
N
j
)
=
−
e
λ
P
0
N
j
+
i
λ
ε
j
k
l
e
λ
P
0
P
k
R
l
{\displaystyle S(N_{j})=-e^{\lambda P_{0}}N_{j}+i\lambda \varepsilon _{jkl}e^{\lambda P_{0}}P_{k}R_{l}}
ε
(
P
0
)
=
0
{\displaystyle \varepsilon (P_{0})=0}
ε
(
P
j
)
=
0
{\displaystyle \varepsilon (P_{j})=0}
ε
(
R
j
)
=
0
{\displaystyle \varepsilon (R_{j})=0}
ε
(
N
j
)
=
0
{\displaystyle \varepsilon (N_{j})=0}
The κ-Poincaré algebra is the dual Hopf algebra to the κ-Poincaré group , and can be interpreted as its “infinitesimal” version.
References
Majid, S.; Ruegg, H. (1994). "Bicrossproduct structure of κ-Poincare group and non-commutative geometry". Physics Letters B . 334 (3–4). Elsevier BV: 348–354. arXiv :hep-th/9405107 . Bibcode :1994PhLB..334..348M . doi :10.1016/0370-2693(94)90699-8 . ISSN 0370-2693 .
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑