For the k-function, see Bateman function .
In mathematics , the K-function , typically denoted K (z ), is a generalization of the hyperfactorial to complex numbers , similar to the generalization of the factorial to the gamma function .
Definition
Formally, the K-function is defined as
K
(
z
)
=
(
2
π
)
−
z
−
1
2
exp
[
(
z
2
)
+
∫
0
z
−
1
ln
Γ
(
t
+
1
)
d
t
]
.
{\displaystyle K(z)=(2\pi )^{-{\frac {z-1}{2}}}\exp \left.}
It can also be given in closed form as
K
(
z
)
=
exp
[
ζ
′
(
−
1
,
z
)
−
ζ
′
(
−
1
)
]
{\displaystyle K(z)=\exp {\bigl }}
where ζ ′(z ) denotes the derivative of the Riemann zeta function , ζ (a ,z ) denotes the Hurwitz zeta function and
ζ
′
(
a
,
z
)
=
d
e
f
∂
ζ
(
s
,
z
)
∂
s
|
s
=
a
,
ζ
(
s
,
q
)
=
∑
k
=
0
∞
(
k
+
q
)
−
s
{\displaystyle \zeta '(a,z)\ {\stackrel {\mathrm {def} }{=}}\ \left.{\frac {\partial \zeta (s,z)}{\partial s}}\right|_{s=a},\ \ \zeta (s,q)=\sum _{k=0}^{\infty }(k+q)^{-s}}
Another expression using the polygamma function is
K
(
z
)
=
exp
[
ψ
(
−
2
)
(
z
)
+
z
2
−
z
2
−
z
2
ln
2
π
]
{\displaystyle K(z)=\exp \left}
Or using the balanced generalization of the polygamma function :
K
(
z
)
=
A
exp
[
ψ
(
−
2
,
z
)
+
z
2
−
z
2
]
{\displaystyle K(z)=A\exp \left}
where A is the Glaisher constant .
Similar to the Bohr-Mollerup Theorem for the gamma function , the log K-function is the unique (up to an additive constant) eventually 2-convex solution to the equation
Δ
f
(
x
)
=
x
ln
(
x
)
{\displaystyle \Delta f(x)=x\ln(x)}
where
Δ
{\displaystyle \Delta }
is the forward difference operator.
Properties
It can be shown that for α > 0:
∫
α
α
+
1
ln
K
(
x
)
d
x
−
∫
0
1
ln
K
(
x
)
d
x
=
1
2
α
2
(
ln
α
−
1
2
)
{\displaystyle \int _{\alpha }^{\alpha +1}\ln K(x)\,dx-\int _{0}^{1}\ln K(x)\,dx={\tfrac {1}{2}}\alpha ^{2}\left(\ln \alpha -{\tfrac {1}{2}}\right)}
This can be shown by defining a function f such that:
f
(
α
)
=
∫
α
α
+
1
ln
K
(
x
)
d
x
{\displaystyle f(\alpha )=\int _{\alpha }^{\alpha +1}\ln K(x)\,dx}
Differentiating this identity now with respect to α yields:
f
′
(
α
)
=
ln
K
(
α
+
1
)
−
ln
K
(
α
)
{\displaystyle f'(\alpha )=\ln K(\alpha +1)-\ln K(\alpha )}
Applying the logarithm rule we get
f
′
(
α
)
=
ln
K
(
α
+
1
)
K
(
α
)
{\displaystyle f'(\alpha )=\ln {\frac {K(\alpha +1)}{K(\alpha )}}}
By the definition of the K-function we write
f
′
(
α
)
=
α
ln
α
{\displaystyle f'(\alpha )=\alpha \ln \alpha }
And so
f
(
α
)
=
1
2
α
2
(
ln
α
−
1
2
)
+
C
{\displaystyle f(\alpha )={\tfrac {1}{2}}\alpha ^{2}\left(\ln \alpha -{\tfrac {1}{2}}\right)+C}
Setting α = 0 we have
∫
0
1
ln
K
(
x
)
d
x
=
lim
t
→
0
[
1
2
t
2
(
ln
t
−
1
2
)
]
+
C
=
C
{\displaystyle \int _{0}^{1}\ln K(x)\,dx=\lim _{t\rightarrow 0}\left+C\ =C}
Now one can deduce the identity above.
The K-function is closely related to the gamma function and the Barnes G-function ; for natural numbers n, we have
K
(
n
)
=
(
Γ
(
n
)
)
n
−
1
G
(
n
)
.
{\displaystyle K(n)={\frac {{\bigl (}\Gamma (n){\bigr )}^{n-1}}{G(n)}}.}
More prosaically, one may write
K
(
n
+
1
)
=
1
1
⋅
2
2
⋅
3
3
⋯
n
n
.
{\displaystyle K(n+1)=1^{1}\cdot 2^{2}\cdot 3^{3}\cdots n^{n}.}
The first values are
1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, ... (sequence A002109 in the OEIS ).
Similar to the multiplication formula for the gamma function :
∏
j
=
1
n
−
1
Γ
(
j
n
)
=
(
2
π
)
n
−
1
2
n
−
n
2
{\displaystyle \prod _{j=1}^{n-1}\Gamma \left({\frac {j}{n}}\right)=(2\pi )^{\frac {n-1}{2}}n^{-{\frac {n}{2}}}}
there exists a multiplication formula for the K-Function involving Glaisher's constant :
∏
j
=
1
n
−
1
K
(
j
n
)
=
A
n
2
−
1
n
n
−
1
12
n
e
1
−
n
2
12
n
{\displaystyle \prod _{j=1}^{n-1}K\left({\frac {j}{n}}\right)=A^{\frac {n^{2}-1}{n}}n^{-{\frac {1}{12n}}}e^{\frac {1-n^{2}}{12n}}}
References
Adamchik, Victor S. (1998), "PolyGamma Functions of Negative Order" , Journal of Computational and Applied Mathematics , 100 (2): 191–199, doi :10.1016/S0377-0427(98)00192-7 , archived from the original on 2016-03-03
Espinosa, Olivier; Moll, Victor Hugo (2004) , "A Generalized polygamma function" (PDF), Integral Transforms and Special Functions , 15 (2): 101–115, doi :10.1080/10652460310001600573 , archived (PDF) from the original on 2023-05-14
Marichal, Jean-Luc; Zenaïdi, Naïm (2024). "A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions: a Tutorial" (PDF). Bitstream . 98 (2): 455–481. arXiv :2207.12694 . doi :10.1007/s00010-023-00968-9 . Archived (PDF) from the original on 2023-04-05.
Sondow, Jonathan; Hadjicostas, Petros (2006-10-16). "The generalized-Euler-constant function γ(z) and a generalization of Somos's quadratic recurrence constant". Journal of Mathematical Analysis and Applications . 332 : 292–314. arXiv :math/0610499 . doi :10.1016/j.jmaa.2006.09.081 .
External links
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑