Misplaced Pages

Kallman–Rota inequality

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the Kallman–Rota inequality, introduced by Kallman & Rota (1970), is a generalization of the Landau–Kolmogorov inequality to Banach spaces. It states that if A is the infinitesimal generator of a one-parameter contraction semigroup then

A f 2 4 f A 2 f . {\displaystyle \|Af\|^{2}\leq 4\|f\|\|A^{2}f\|.}

References

  • Kallman, Robert R.; Rota, Gian-Carlo (1970), "On the inequality f 2 4 f f {\displaystyle \Vert f^{\prime }\Vert ^{2}\leqq 4\Vert f\Vert \cdot \Vert f''\Vert } ", Inequalities, II (Proc. Second Sympos., U.S. Air Force Acad., Colo., 1967), New York: Academic Press, pp. 187–192, MR 0278059.
Category: