Special function in mathematics
In mathematics , the Kampé de Fériet function is a two-variable generalization of the generalized hypergeometric series , introduced by Joseph Kampé de Fériet .
The Kampé de Fériet function is given by
p
+
q
F
r
+
s
(
a
1
,
⋯
,
a
p
:
b
1
,
b
1
′
;
⋯
;
b
q
,
b
q
′
;
c
1
,
⋯
,
c
r
:
d
1
,
d
1
′
;
⋯
;
d
s
,
d
s
′
;
x
,
y
)
=
∑
m
=
0
∞
∑
n
=
0
∞
(
a
1
)
m
+
n
⋯
(
a
p
)
m
+
n
(
c
1
)
m
+
n
⋯
(
c
r
)
m
+
n
(
b
1
)
m
(
b
1
′
)
n
⋯
(
b
q
)
m
(
b
q
′
)
n
(
d
1
)
m
(
d
1
′
)
n
⋯
(
d
s
)
m
(
d
s
′
)
n
⋅
x
m
y
n
m
!
n
!
.
{\displaystyle {}^{p+q}F_{r+s}\left({\begin{matrix}a_{1},\cdots ,a_{p}\colon b_{1},b_{1}{}';\cdots ;b_{q},b_{q}{}';\\c_{1},\cdots ,c_{r}\colon d_{1},d_{1}{}';\cdots ;d_{s},d_{s}{}';\end{matrix}}x,y\right)=\sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(a_{1})_{m+n}\cdots (a_{p})_{m+n}}{(c_{1})_{m+n}\cdots (c_{r})_{m+n}}}{\frac {(b_{1})_{m}(b_{1}{}')_{n}\cdots (b_{q})_{m}(b_{q}{}')_{n}}{(d_{1})_{m}(d_{1}{}')_{n}\cdots (d_{s})_{m}(d_{s}{}')_{n}}}\cdot {\frac {x^{m}y^{n}}{m!n!}}.}
Applications
The general sextic equation can be solved in terms of Kampé de Fériet functions.
See also
References
Mathworld - Sextic Equation
Exton, Harold (1978), Handbook of hypergeometric integrals , Mathematics and its Applications, Chichester: Ellis Horwood Ltd., ISBN 978-0-85312-122-0 , MR 0474684
Kampé de Fériet, M. J. (1937), La fonction hypergéométrique. , Mémorial des sciences mathématiques (in French), vol. 85, Paris: Gauthier-Villars, JFM 63.0996.03
Ragab, F. J. (1963). "Expansions of Kampe de Feriet's double hypergeometric function of higher order". J. reine angew. Math. 212 (212): 113–119. doi :10.1515/crll.1963.212.113 . S2CID 118329382 .
External links
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑