Location of 40 Eridani (circled) | |
Observation data Epoch J2000.0 Equinox J2000.0 | |
---|---|
Constellation | Eridanus |
40 Eridani A | |
Right ascension | 04 15 16.31962 |
Declination | −07° 39′ 10.3308″ |
Apparent magnitude (V) | 4.43 |
40 Eridani B | |
Right ascension | 04 15 21.79572 |
Declination | −07° 39′ 29.2040″ |
Apparent magnitude (V) | 9.52 |
40 Eridani C | |
Right ascension | 04 15 21.53600 |
Declination | −07° 39′ 20.6946″ |
Apparent magnitude (V) | 11.17 |
Characteristics | |
40 Eridani A | |
Spectral type | K0.5V |
U−B color index | +0.45 |
B−V color index | +0.82 |
40 Eridani B | |
Spectral type | DA4 |
U−B color index | +0.45 |
B−V color index | +0.03 |
40 Eridani C | |
Spectral type | M4.5eV |
U−B color index | +0.83 |
B−V color index | +1.67 |
Variable type | Flare star |
Astrometry | |
40 Eridani A | |
Radial velocity (Rv) | −42.47±0.12 km/s |
Proper motion (μ) | RA: −2,240.085 mas/yr Dec.: −3,421.809 mas/yr |
Parallax (π) | 199.6080 ± 0.1208 mas |
Distance | 16.340 ± 0.010 ly (5.010 ± 0.003 pc) |
Absolute magnitude (MV) | 5.93 |
40 Eridani B | |
Radial velocity (Rv) | −21 km/s |
Proper motion (μ) | RA: −2,236.169 mas/yr Dec.: −3,338.955 mas/yr |
Parallax (π) | 199.6911 ± 0.0512 mas |
Distance | 16.333 ± 0.004 ly (5.008 ± 0.001 pc) |
40 Eridani C | |
Radial velocity (Rv) | −44.06±0.20 km/s |
Proper motion (μ) | RA: −2,247.183 mas/yr Dec.: −3,409.824 mas/yr |
Parallax (π) | 199.4516 ± 0.0692 mas |
Distance | 16.353 ± 0.006 ly (5.014 ± 0.002 pc) |
Orbit | |
Primary | 40 Eridani A |
Companion | 40 Eridani BC |
Period (P) | ~8,000 yr |
Semi-major axis (a) | ~400 AU |
Orbit | |
Primary | 40 Eridani B |
Companion | 40 Eridani C |
Period (P) | 230.30±0.68 yr |
Semi-major axis (a) | 6.930±0.050" (~35 AU) |
Eccentricity (e) | 0.4294±0.0027 |
Inclination (i) | 107.56±0.29° |
Longitude of the node (Ω) | 151.44±0.12° |
Periastron epoch (T) | 1847.7±1.1 |
Argument of periastron (ω) (secondary) | 318.4±1.1° |
Details | |
40 Eridani A | |
Mass | 0.78±0.08 M☉ |
Radius | 0.804±0.006 R☉ |
Luminosity | 0.4±0.01 L☉ |
Surface gravity (log g) | 4.35±0.1 cgs |
Temperature | 5126±30 K |
Metallicity | −0.36±0.02 dex |
Rotation | ~37–43 days |
Rotational velocity (v sin i) | 1.23 ± 0.28 km/s |
Age | 6.9±4.7 Gyr |
40 Eridani B | |
Mass | 0.573±0.018 M☉ |
Radius | 0.01308±0.00020 R☉ |
Luminosity | 0.01349±0.00054 L☉ |
Surface gravity (log g) | 7.957±0.020 cgs |
Temperature | 17,200±110 K |
40 Eridani C | |
Mass | 0.222±0.22 M☉ |
Radius | 0.274±0.011 R☉ |
Luminosity | 0.00651±0.00013 L☉ |
Surface gravity (log g) | ~5.5 cgs |
Temperature | 3,167±60 K |
Age | 1.8 Gyr |
Other designations | |
ο Eri, 40 Eri, GJ 166, ADS 3093, CCDM J04153-0739 | |
A: Keid, BD−07° 780, HD 26965, HIP 19849, HR 1325, SAO 131063, LHS 23, LTT 1907 | |
B: BD−07° 781, HD 26976, SAO 131065, G 160-060, LHS 24, LTT 1908 | |
C: DY Eri, BD−07°781 C, LHS 25, LTT 1909 | |
Database references | |
SIMBAD | A |
B | |
C |
40 Eridani is a triple star system in the constellation of Eridanus, abbreviated 40 Eri. It has the Bayer designation Omicron Eridani, which is Latinized from ο Eridani and abbreviated Omicron Eri or ο Eri. Based on parallax measurements taken by the Gaia mission, it is about 16.3 light-years from the Sun.
The primary star of the system, designated 40 Eridani A and named Keid, is easily visible to the naked eye. It is orbited by a binary pair whose two components are designated 40 Eridani B and C, and which were discovered on January 31, 1783, by William Herschel. It was again observed by Friedrich Struve in 1825 and by Otto Struve in 1851.
In 1910, it was discovered that although component B was a faint star, it was white in color. This meant that it had to be a small star; in fact it was a white dwarf, the first discovered. Although it is neither the closest white dwarf, nor the brightest in the night sky, it is by far the easiest to observe; it is nearly three magnitudes brighter than Van Maanen's Star, the nearest solitary white dwarf, and unlike the companions of Procyon and Sirius it is not swamped in the glare of a much brighter primary.
Nomenclature
40 Eridani is the system's Flamsteed designation and ο² Eridani (Latinised to Omicron Eridani) its Bayer designation. The designations of the sub-components – 40 Eridani A, B and C – derive from the convention used by the Washington Multiplicity Catalog (WMC) for multiple star systems, and adopted by the International Astronomical Union (IAU). 40 Eridani C also bears the variable star designation DY Eridani.
The system bore the traditional name Keid derived from the Arabic word قيض (alqayḍ) meaning "the eggshells," alluding to its neighbour Beid (Arabic "egg"). In 2016, the IAU organized a Working Group on Star Names (WGSN) to catalogue and standardize proper names for stars. The WGSN decided to attribute proper names to individual stars rather than entire multiple systems. It approved the name Keid for the component 40 Eridani A on 12 September 2016 and it is now so included in the List of IAU-approved Star Names.
Properties
40 Eridani A is a main-sequence dwarf of spectral type K1, 40 Eridani B is a 9th magnitude white dwarf of spectral type DA4, and 40 Eridani C is an 11th magnitude red dwarf flare star of spectral type M4.5e. When component B was a main-sequence star, it is thought to have been the most massive member of the system, but ejected most of its mass before it became a white dwarf. B and C orbit each other approximately 400 AU from the primary star, A. Their orbit has a semimajor axis of 35 AU and is rather elliptical with an orbital eccentricity of 0.410).
As seen from the 40 Eridani system, the Sun is a 3.4-magnitude star in Hercules, near the border with Serpens Caput.
Potential for life
The habitable zone of 40 Eridani A, where a planet could exist with liquid water, is near 0.68 AU from A. At this distance a planet would complete a revolution in 223 Earth days (according to the third of Kepler's laws) and 40 Eridani A would appear nearly 20% wider than the Sun does on Earth. An observer on a planet in the 40 Eridani A system would see the B-C pair as unusually bright white and reddish-orange stars in the night sky – magnitudes −8 and −6, slightly brighter than the appearance of Venus seen from Earth as the evening star.
It is unlikely that habitable planets exist around 40 Eridani B because they would have been sterilized by its evolution into a white dwarf. As for 40 Eridani C, it is prone to flares, which cause large momentary increases in the emission of X-rays as well as visible light. This would be lethal to Earth-type life on planets near the flare star.
Search for planets
40 Eridani A shows periodic radial velocity variations, which were suggested to be caused by a planetary companion. The 42-day period is close to the stellar rotation period, which made the possible planetary nature of the signal difficult to confirm. A 2018 study found that most evidence supports a planetary origin for the signal, but this has remained controversial, with a 2021 study characterizing the signal as a false positive. As of 2022, the cause of the radial velocity variations remained inconclusive.
Further studies in 2023 and 2024 concluded that the radial velocity signal very likely does originate from stellar activity, and not from a planet.
The candidate planet would have had a minimum mass of 8.47±0.47 M🜨, and lie considerably interior to the habitable zone, receiving nine times more stellar flux than Earth, which is an even greater amount than Mercury, the innermost planet in the Solar System, on average receives from the Sun.
In fiction
In the Star Trek franchise, the planet Vulcan orbits 40 Eridani A. Vulcan has been referenced in relation to the real-life search for exoplanets in this system. The hypothetical planet 40 Eridani A b is also mentioned in the book Project Hail Mary as the home of the eponymous Eridian species.
Notes
- From 40 Eridani the Sun would appear on the diametrically opposite side of the sky at the coordinates RA=16 15 16.32, Dec=07° 39′ 10.34″, which is located near the border of Hercules (constellation) and Serpens Caput, the closest bright star being Alpha Serpentis. The absolute magnitude of the Sun is 4.85, so, at a distance of 5.04 parsecs, the Sun would have an apparent magnitude .
- From where h is the apparent height, d is the distance of the object, and a is the actual size of the object.
References
- ^ Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
- ^ van Leeuwen, F. (2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. S2CID 18759600.
- ^ Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
- ^ Gliese Catalogue of Nearby Stars, preliminary 3rd ed., 1991. CDS ID V/70A.
- ^ Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
- Gray, R. O.; Corbally, C. J.; Garrison, R. F.; McFadden, M. T.; Bubar, E. J.; McGahee, C. E.; O'Donoghue, A. A.; Knox, E. R. (2006). "Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 pc-The Southern Sample". The Astronomical Journal. 132 (1): 161–170. arXiv:astro-ph/0603770. Bibcode:2006AJ....132..161G. doi:10.1086/504637. S2CID 119476992.
- General Catalogue of Trigonometric Parallaxes, 4th ed., 1995. CDS ID I/238A.
- Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007-2013)". VizieR On-line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S. 1: B/gcvs. Bibcode:2009yCat....102025S.
- Holmberg, J.; et al. (July 2009), "The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics", Astronomy and Astrophysics, 501 (3): 941–947, arXiv:0811.3982, Bibcode:2009A&A...501..941H, doi:10.1051/0004-6361/200811191, S2CID 118577511.
- Evans, D. S (1967). "The Revision of the General Catalogue of Radial Velocities". Determination of Radial Velocities and Their Applications. 30: 57. Bibcode:1967IAUS...30...57E.
- ^ Heintz, W. D. (1974). "Astrometric study of four visual binaries". Astronomical Journal. 79: 819. Bibcode:1974AJ.....79..819H. doi:10.1086/111614.
- ^ "40 Eridani 3 (Omicron² Eridani)". solstation.com. Archived from the original on 30 September 2023. Retrieved 2018-02-06.
- Mason, Brian D.; et al. (November 2017), "Binary Star Orbits. V. The Nearby White Dwarf/Red Dwarf Pair 40 Eri BC", The Astronomical Journal, 154 (5): 9, arXiv:1707.03635, Bibcode:2017AJ....154..200M, doi:10.3847/1538-3881/aa803e, S2CID 119080080, 200.
- ^ Ma, Bo; et al. (2018). "The first super-Earth Detection from the High Cadence and High Radial Velocity Precision Dharma Planet Survey". Monthly Notices of the Royal Astronomical Society. 480 (2): 2411. arXiv:1807.07098. Bibcode:2018MNRAS.480.2411M. doi:10.1093/mnras/sty1933.
- ^ Rains, Adam D.; et al. (April 2020). "Precision angular diameters for 16 southern stars with VLTI/PIONIER". Monthly Notices of the Royal Astronomical Society. 493 (2): 2377–2394. arXiv:2004.02343. Bibcode:2020MNRAS.493.2377R. doi:10.1093/mnras/staa282.
- ^ Díaz, Matías R.; Jenkins, James S.; Tuomi, Mikko; Butler, R. Paul; Soto, Maritza G.; Teske, Johanna K.; Feng, Fabo; Shectman, Stephen A.; Arriagada, Pamela; Crane, Jeffrey D.; Thompson, Ian B.; Vogt, Steven S. (2018). "The test case of HD26965: Difficulties disentangling weak Doppler signals from stellar activity". The Astronomical Journal. 155 (3): 126. arXiv:1801.03970. Bibcode:2018AJ....155..126D. doi:10.3847/1538-3881/aaa896. S2CID 119404519.
- ^ Bond, Howard E.; Bergeron, P.; Bédard, A. (October 2017). "Astrophysical Implications of a New Dynamical Mass for the Nearby White Dwarf 40 Eridani B". The Astrophysical Journal. 848 (1): 16. arXiv:1709.00478. Bibcode:2017ApJ...848...16B. doi:10.3847/1538-4357/aa8a63. S2CID 119257982. 16.
- ^ Mann, Andrew W.; et al. (May 2015). "How to Constrain Your M Dwarf: Measuring Effective Temperature, Bolometric Luminosity, Mass, and Radius". The Astrophysical Journal. 804 (1): 38. arXiv:1501.01635. Bibcode:2015ApJ...804...64M. doi:10.1088/0004-637X/804/1/64. S2CID 19269312. 64.
- ^ Cifuentes, C.; Caballero, J. A.; Cortés-Contreras, M.; Montes, D.; Abellán, F. J.; Dorda, R.; Holgado, G.; Zapatero Osorio, M. R.; Morales, J. C.; Amado, P. J.; Passegger, V. M.; Quirrenbach, A.; Reiners, A.; Ribas, I.; Sanz-Forcada, J. (2020-10-01), "CARMENES input catalogue of M dwarfs. V. Luminosities, colours, and spectral energy distributions", Astronomy and Astrophysics, 642: A115, arXiv:2007.15077, Bibcode:2020A&A...642A.115C, doi:10.1051/0004-6361/202038295, ISSN 0004-6361
- ^ "Naming Stars". IAU.org. Retrieved 16 December 2017.
- Herschel, William (1785). "Catalogue of Double Stars. By William Herschel, Esq. F. R. S". Philosophical Transactions of the Royal Society of London. 75: 40–126. Bibcode:1785RSPT...75...40H. doi:10.1098/rstl.1785.0006. JSTOR 106749. S2CID 186209747.
- Van Den Bos, W. H. (1926). "The orbit and the masses of 40 Eridani BC". Bulletin of the Astronomical Institutes of the Netherlands. 3: 128. Bibcode:1926BAN.....3..128V.
- White Dwarfs, E. Schatzman, Amsterdam: North-Holland, 1958.
- Keid Archived 2007-05-14 at the Wayback Machine, Jim Kaler, STARS web page, accessed 15/5/2007, 10/12/2011.
- Hessman, F.V.; Dhillon, V.S.; Winget, D.E.; Schreiber, M.R.; Horne, K.; Marsh, T.R.; et al. (2010). "On the naming convention used for multiple star systems and extrasolar planets". arXiv:1012.0707 .
- "Beid". stars.astro.illinois.edu.
- "Working Group on Star Names (WGSN)". Working Groups. International Astronomical Union. Retrieved 22 May 2016.
- Working Group on Star Names Triennial Report (2015-2018) (PDF) (Report). International Astronomical Union. 2018. p. 5. Retrieved 2018-07-14.
- Rosenthal, Lee J.; Fulton, Benjamin J.; Hirsch, Lea A.; Isaacson, Howard T.; Howard, Andrew W.; Dedrick, Cayla M.; Sherstyuk, Ilya A.; Blunt, Sarah C.; Petigura, Erik A.; Knutson, Heather A.; Behmard, Aida; Chontos, Ashley; Crepp, Justin R.; Crossfield, Ian J. M.; Dalba, Paul A.; Fischer, Debra A.; Henry, Gregory W.; Kane, Stephen R.; Kosiarek, Molly; Marcy, Geoffrey W.; Rubenzahl, Ryan A.; Weiss, Lauren M.; Wright, Jason T. (2021). "The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades". The Astrophysical Journal Supplement Series. 255 (1): 8. arXiv:2105.11583. Bibcode:2021ApJS..255....8R. doi:10.3847/1538-4365/abe23c. S2CID 235186973.
- Zhao, Lily L.; et al. (2022). "The EXPRES Stellar Signals Project II. State of the Field in Disentangling Photospheric Velocities". The Astronomical Journal. 163 (4): 171. arXiv:2201.10639. Bibcode:2022AJ....163..171Z. doi:10.3847/1538-3881/ac5176. S2CID 246285610.
- Laliotis, Katherine; Burt, Jennifer A.; et al. (February 2023). "Doppler Constraints on Planetary Companions to Nearby Sun-like Stars: An Archival Radial Velocity Survey of Southern Targets for Proposed NASA Direct Imaging Missions". The Astronomical Journal. 165 (4): 176. arXiv:2302.10310. Bibcode:2023AJ....165..176L. doi:10.3847/1538-3881/acc067.
- ^ Burrows, Abigail; Halverson, Samuel; et al. (April 2024). "The Death of Vulcan: NEID Reveals That the Planet Candidate Orbiting HD 26965 Is Stellar Activity". The Astronomical Journal. 167 (5): 243. arXiv:2404.17494. Bibcode:2024AJ....167..243B. doi:10.3847/1538-3881/ad34d5.
- Sallie Baliunas; Gene Roddenberry; et al. "Vulcan's Sun". Archived from the original on August 29, 2009. Retrieved 2011-04-21.
- Clery, Daniel (2018-09-18). "Spock's home world has been discovered (sort of)". Science. doi:10.1126/science.aav4653. Retrieved 2018-09-20.
- Weir, Andy (2021). Project Hail Mary. New York: Ballantine Books. p. 238. ISBN 978-0-593-13520-4.
External links
- Keid at Jim Kaler's STARS.
- Omicron(2) Eridani entry at the Internet Stellar Database.
← Celestial objects within 15–20 light-years | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||
| |||||||||||
| |||||||||||
| |||||||||||
| |||||||||||
|
- Emission-line stars
- K-type main-sequence stars
- M-type main-sequence stars
- White dwarfs
- Solar-type stars
- Triple star systems
- Hypothetical planetary systems
- Stars with proper names
- Eridanus (constellation)
- Bayer objects
- Bright Star Catalogue objects
- Durchmusterung objects
- Flamsteed objects
- Gliese and GJ objects
- Henry Draper Catalogue objects
- Hipparcos objects
- Objects with variable star designations