Misplaced Pages

Kepler-35

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Binary star system in the constellation Cygnus
Kepler-35

A light curve for Kepler-35, plotted from Kepler data
Observation data
Epoch J2000      Equinox J2000
Constellation Cygnus
Right ascension 19 37 59.2726
Declination +46° 41′ 22.953″
Characteristics
Spectral type G / G
Variable type Algol
Astrometry
Proper motion (μ) RA: −2.280(30) mas/yr
Dec.: −8.305(33) mas/yr
Parallax (π)0.5248 ± 0.0260 mas
Distance6,200 ± 300 ly
(1,910 ± 90 pc)
Orbit
Period (P)20.73 d
Semi-major axis (a)0.176 au
Eccentricity (e)0.16
Inclination (i)89.44°
Details
Kepler-35A
Mass0.8877 M
Radius1.0284 R
Luminosity0.94 L
Surface gravity (log g)4.3623 cgs
Temperature5,606 K
Metallicity-0.13
Kepler-35B
Mass0.8094 M
Radius0.7861 R
Luminosity0.41 L
Surface gravity (log g)4.5556 cgs
Temperature5,202 K
Metallicity-0.13
Age8-12 Myr
Other designations
KOI-2937, KIC 9837578, 2MASS J19375927+4641231
Database references
SIMBADdata
KICdata

Kepler-35 is a binary star system in the constellation of Cygnus. These stars, called Kepler-35A and Kepler-35B have masses of 89% and 81% solar masses respectively, and both are assumed to be of spectral class G. They are separated by 0.176 AU, and complete an eccentric orbit around a common center of mass every 20.73 days.

Description

The Kepler-35 system consists of two stars slightly less massive than the sun in a 21-day orbit aligned edge-on to us so that the stars eclipse each other. The orbit has a semi-major axis 0.2 au and a mild eccentricity of 0.16. of The precise measurements made by the Kepler satellite allow doppler beaming to be detected, as well as brightness variations due to the ellipsoidal shape of the stars and reflections of one star on the other.

The primary star has a mass of 0.9 M and a radius fractionally larger than the sun. With an effective temperature of 5,606 K, its luminosity is 0.94 L. The secondary star has a mass of 0.8 M, a radius of 0.8 R, an effective surface temperature of 5,202 K, and a bolometric luminosity of 0.4 L.

Planetary system

Kepler-35b is a gas giant that orbits the two stars in the Kepler-35 system. The planet is over an eighth of Jupiter's mass and has a radius of 0.728 Jupiter radii. The planet completes a somewhat eccentric orbit every 131.458 days from a semimajor axis of just over 0.6 AU, only about 3.5 times the semi-major axis between the parent stars. The proximity and eccentricity of the binary star as well as both stars have similar masses results the planet's orbit to significantly deviate from Keplerian orbit. Studies have suggested that this planet must have been formed outside its current orbit and migrated inwards later. The eccentricity of planetary orbit is acquired on the last stage of migration, due to interaction with the residual debris disk.

Numerical simulation of formation of planetary system Kepler-35 has shown the formation of additional rocky planets in the habitable zone is highly likely, and these planetary orbits are stable.

The Kepler-35 planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 0.127 MJ 0.60347 131.458 0.042 90.760° 0.728 RJ

See also

References

  1. "Kepler Preview for KPLR008572936-2009259160929". Mikulski Archive for Space Telescopes. Space Telescope Science Institute. Retrieved 10 September 2022.
  2. ^ Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  3. Jean Schneider (2012). "Notes for star Kepler-35(AB)". Extrasolar Planets Encyclopaedia. Archived from the original on 24 February 2012. Retrieved 7 April 2012.
  4. ^ Coughlin, J. L.; López-Morales, M.; Harrison, T. E.; Ule, N.; Hoffman, D. I. (2011). "Low-mass Eclipsing Binaries in the Initial Kepler Data Release". The Astronomical Journal. 141 (3): 78. arXiv:1007.4295. Bibcode:2011AJ....141...78C. doi:10.1088/0004-6256/141/3/78. S2CID 38408077.
  5. ^ Welsh, William F.; et al. (2012). "Transiting circumbinary planets Kepler-34 b and Kepler-35 b". Nature. 481 (7382): 475–479. arXiv:1204.3955. Bibcode:2012Natur.481..475W. doi:10.1038/nature10768. PMID 22237021. S2CID 4426222.
  6. Leung, Gene C. K.; Hoi Lee, Man (2013). "An Analytic Theory for the Orbits of Circumbinary Planets". The Astrophysical Journal. 763 (2): 107. arXiv:1212.2545. Bibcode:2013ApJ...763..107L. doi:10.1088/0004-637X/763/2/107.
  7. Paardekooper, Sijme-Jan; Leinhardt, Zoë M.; Thébault, Philippe; Baruteau, Clément (2012). "HOW NOT TO BUILD TATOOINE: THE DIFFICULTY OF IN SITU FORMATION OF CIRCUMBINARY PLANETS KEPLER 16b, KEPLER 34b, AND KEPLER 35b". The Astrophysical Journal. 754 (1): L16. arXiv:1206.3484. Bibcode:2012ApJ...754L..16P. doi:10.1088/2041-8205/754/1/L16. S2CID 119202035.
  8. Pierens, A.; Nelson, R. P. (2013), "Migration and gas accretion scenarios for the Kepler 16, 34 and 35 circumbinary planets", Astronomy & Astrophysics, 556: A134, arXiv:1307.0713, Bibcode:2013A&A...556A.134P, doi:10.1051/0004-6361/201321777, S2CID 118597351
  9. Macau, E E N.; Domingos, R. C.; Izidoro, A.; Amarante, A.; Winter, O. C.; Barbosa, G. O. (2020), "Earth-size planet formation in the habitable zone of circumbinary stars", Monthly Notices of the Royal Astronomical Society, 494: 1045–1057, arXiv:2003.11682, doi:10.1093/mnras/staa757, S2CID 214667061

Further reading

Demidova, T. V.; Shevchenko, I. I. (2018). "Simulations of the Dynamics of the Debris Disks in the Systems Kepler-16, Kepler-34, and Kepler-35". Astronomy Letters. 44 (2): 119. arXiv:1901.07390. Bibcode:2018AstL...44..119D. doi:10.1134/S1063773718010012. S2CID 119226649.

Constellation of Cygnus
Stars
Bayer
Flamsteed
Variable
HR
HD
Gliese
Kepler
WR
Other
Star
clusters
Association
Open
Molecular
clouds
Nebulae
Dark
H II
Planetary
WR
SNR
Galaxies
NGC
Other
Exoplanets
Kepler
Other
Exomoons
Kepler
2012 in space
Space probe launches Space probes launched in 2013

Impact events
Selected NEOs
Exoplanets Exoplanets discovered in 2012
Discoveries
Comets Comets in 2012
Space exploration
Categories: