This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (July 2024) (Learn how and when to remove this message) |
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources. Find sources: "Killed process" – news · newspapers · books · scholar · JSTOR (July 2024) |
In probability theory — specifically, in stochastic analysis — a killed process is a stochastic process that is forced to assume an undefined or "killed" state at some (possibly random) time.
Definition
Let X : T × Ω → S be a stochastic process defined for "times" t in some ordered index set T, on a probability space (Ω, Σ, P), and taking values in a measurable space S. Let ζ : Ω → T be a random time, referred to as the killing time. Then the killed process Y associated to X is defined by
and Yt is left undefined for t ≥ ζ. Alternatively, one may set Yt = c for t ≥ ζ, where c is a "coffin state" not in S.
See also
References
- Øksendal, Bernt K. (2003). Stochastic Differential Equations: An Introduction with Applications (Sixth ed.). Berlin: Springer. ISBN 3-540-04758-1. (See Section 8.2)