Misplaced Pages

Kolmogorov's two-series theorem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Kolmogorov's Two-Series Theorem)

In probability theory, Kolmogorov's two-series theorem is a result about the convergence of random series. It follows from Kolmogorov's inequality and is used in one proof of the strong law of large numbers.

Statement of the theorem

Let ( X n ) n = 1 {\displaystyle \left(X_{n}\right)_{n=1}^{\infty }} be independent random variables with expected values E [ X n ] = μ n {\displaystyle \mathbf {E} \left=\mu _{n}} and variances V a r ( X n ) = σ n 2 {\displaystyle \mathbf {Var} \left(X_{n}\right)=\sigma _{n}^{2}} , such that n = 1 μ n {\displaystyle \sum _{n=1}^{\infty }\mu _{n}} converges in R {\displaystyle \mathbb {R} } and n = 1 σ n 2 {\displaystyle \sum _{n=1}^{\infty }\sigma _{n}^{2}} converges in R {\displaystyle \mathbb {R} } . Then n = 1 X n {\displaystyle \sum _{n=1}^{\infty }X_{n}} converges in R {\displaystyle \mathbb {R} } almost surely.

Proof

Assume WLOG μ n = 0 {\displaystyle \mu _{n}=0} . Set S N = n = 1 N X n {\displaystyle S_{N}=\sum _{n=1}^{N}X_{n}} , and we will see that lim sup N S N lim inf N S N = 0 {\displaystyle \limsup _{N}S_{N}-\liminf _{N}S_{N}=0} with probability 1.

For every m N {\displaystyle m\in \mathbb {N} } , lim sup N S N lim inf N S N = lim sup N ( S N S m ) lim inf N ( S N S m ) 2 max k N | i = 1 k X m + i | {\displaystyle \limsup _{N\to \infty }S_{N}-\liminf _{N\to \infty }S_{N}=\limsup _{N\to \infty }\left(S_{N}-S_{m}\right)-\liminf _{N\to \infty }\left(S_{N}-S_{m}\right)\leq 2\max _{k\in \mathbb {N} }\left|\sum _{i=1}^{k}X_{m+i}\right|}

Thus, for every m N {\displaystyle m\in \mathbb {N} } and ϵ > 0 {\displaystyle \epsilon >0} , P ( lim sup N ( S N S m ) lim inf N ( S N S m ) ϵ ) P ( 2 max k N | i = 1 k X m + i | ϵ   ) = P ( max k N | i = 1 k X m + i | ϵ 2   ) lim sup N 4 ϵ 2 i = m + 1 m + N σ i 2 = 4 ϵ 2 lim N i = m + 1 m + N σ i 2 {\displaystyle {\begin{aligned}\mathbb {P} \left(\limsup _{N\to \infty }\left(S_{N}-S_{m}\right)-\liminf _{N\to \infty }\left(S_{N}-S_{m}\right)\geq \epsilon \right)&\leq \mathbb {P} \left(2\max _{k\in \mathbb {N} }\left|\sum _{i=1}^{k}X_{m+i}\right|\geq \epsilon \ \right)\\&=\mathbb {P} \left(\max _{k\in \mathbb {N} }\left|\sum _{i=1}^{k}X_{m+i}\right|\geq {\frac {\epsilon }{2}}\ \right)\\&\leq \limsup _{N\to \infty }4\epsilon ^{-2}\sum _{i=m+1}^{m+N}\sigma _{i}^{2}\\&=4\epsilon ^{-2}\lim _{N\to \infty }\sum _{i=m+1}^{m+N}\sigma _{i}^{2}\end{aligned}}}

While the second inequality is due to Kolmogorov's inequality.

By the assumption that n = 1 σ n 2 {\displaystyle \sum _{n=1}^{\infty }\sigma _{n}^{2}} converges, it follows that the last term tends to 0 when m {\displaystyle m\to \infty } , for every arbitrary ϵ > 0 {\displaystyle \epsilon >0} .

References

  • Durrett, Rick. Probability: Theory and Examples. Duxbury advanced series, Third Edition, Thomson Brooks/Cole, 2005, Section 1.8, pp. 60โ€“69.
  • M. Loรจve, Probability theory, Princeton Univ. Press (1963) pp. Sect. 16.3
  • W. Feller, An introduction to probability theory and its applications, 2, Wiley (1971) pp. Sect. IX.9
Category: