Misplaced Pages

Lady Windermere's Fan (mathematics)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Lady Windermere's Fan" mathematics – news · newspapers · books · scholar · JSTOR (April 2021) (Learn how and when to remove this message)

In mathematics, Lady Windermere's Fan is a telescopic identity employed to relate global and local error of a numerical algorithm. The name is derived from Oscar Wilde's 1892 play Lady Windermere's Fan, A Play About a Good Woman.

Lady Windermere's Fan for a function of one variable

Let E (   τ , t 0 , y ( t 0 )   ) {\displaystyle E(\ \tau ,t_{0},y(t_{0})\ )} be the exact solution operator so that:

y ( t 0 + τ ) = E ( τ , t 0 , y ( t 0 ) )   y ( t 0 ) {\displaystyle y(t_{0}+\tau )=E(\tau ,t_{0},y(t_{0}))\ y(t_{0})}

with t 0 {\displaystyle t_{0}} denoting the initial time and y ( t ) {\displaystyle y(t)} the function to be approximated with a given y ( t 0 ) {\displaystyle y(t_{0})} .

Further let y n {\displaystyle y_{n}} , n N ,   n N {\displaystyle n\in \mathbb {N} ,\ n\leq N} be the numerical approximation at time t n {\displaystyle t_{n}} , t 0 < t n T = t N {\displaystyle t_{0}<t_{n}\leq T=t_{N}} . y n {\displaystyle y_{n}} can be attained by means of the approximation operator Φ (   h n , t n , y ( t n )   ) {\displaystyle \Phi (\ h_{n},t_{n},y(t_{n})\ )} so that:

y n = Φ (   h n 1 , t n 1 , y ( t n 1 )   )   y n 1 {\displaystyle y_{n}=\Phi (\ h_{n-1},t_{n-1},y(t_{n-1})\ )\ y_{n-1}\quad } with h n = t n + 1 t n {\displaystyle h_{n}=t_{n+1}-t_{n}}

The approximation operator represents the numerical scheme used. For a simple explicit forward Euler method with step width h {\displaystyle h} this would be: Φ Euler (   h , t n 1 , y ( t n 1 )   )   y n 1 = ( 1 + h d d t )   y n 1 {\displaystyle \Phi _{\text{Euler}}(\ h,t_{n-1},y(t_{n-1})\ )\ y_{n-1}=(1+h{\frac {d}{dt}})\ y_{n-1}}

The local error d n {\displaystyle d_{n}} is then given by:

d n := D (   h n 1 , t n 1 , y ( t n 1 )   )   y n 1 := [ Φ (   h n 1 , t n 1 , y ( t n 1 )   ) E (   h n 1 , t n 1 , y ( t n 1 )   ) ]   y n 1 {\displaystyle d_{n}:=D(\ h_{n-1},t_{n-1},y(t_{n-1})\ )\ y_{n-1}:=\left\ y_{n-1}}

In abbreviation we write:

Φ ( h n ) := Φ (   h n , t n , y ( t n )   ) {\displaystyle \Phi (h_{n}):=\Phi (\ h_{n},t_{n},y(t_{n})\ )}
E ( h n ) := E (   h n , t n , y ( t n )   ) {\displaystyle E(h_{n}):=E(\ h_{n},t_{n},y(t_{n})\ )}
D ( h n ) := D (   h n , t n , y ( t n )   ) {\displaystyle D(h_{n}):=D(\ h_{n},t_{n},y(t_{n})\ )}

Then Lady Windermere's Fan for a function of a single variable t {\displaystyle t} writes as:

y N y ( t N ) = j = 0 N 1 Φ ( h j )   ( y 0 y ( t 0 ) ) + n = 1 N   j = n N 1 Φ ( h j )   d n {\displaystyle y_{N}-y(t_{N})=\prod _{j=0}^{N-1}\Phi (h_{j})\ (y_{0}-y(t_{0}))+\sum _{n=1}^{N}\ \prod _{j=n}^{N-1}\Phi (h_{j})\ d_{n}}

with a global error of y N y ( t N ) {\displaystyle y_{N}-y(t_{N})}

Explanation

y N y ( t N ) = y N j = 0 N 1 Φ ( h j )   y ( t 0 ) + j = 0 N 1 Φ ( h j )   y ( t 0 ) = 0 y ( t N ) = y N j = 0 N 1 Φ ( h j )   y ( t 0 ) + n = 0 N 1   j = n N 1 Φ ( h j )   y ( t n ) n = 1 N   j = n N 1 Φ ( h j )   y ( t n ) = j = 0 N 1 Φ ( h j )   y ( t 0 ) n = N N [ j = n N 1 Φ ( h j ) ]   y ( t n ) = j = 0 N 1 Φ ( h j )   y ( t 0 ) y ( t N ) = j = 0 N 1 Φ ( h j )   y 0 j = 0 N 1 Φ ( h j )   y ( t 0 ) + n = 1 N   j = n 1 N 1 Φ ( h j )   y ( t n 1 ) n = 1 N   j = n N 1 Φ ( h j )   y ( t n ) = j = 0 N 1 Φ ( h j )   ( y 0 y ( t 0 ) ) + n = 1 N   j = n N 1 Φ ( h j ) [ Φ ( h n 1 ) E ( h n 1 ) ]   y ( t n 1 ) = j = 0 N 1 Φ ( h j )   ( y 0 y ( t 0 ) ) + n = 1 N   j = n N 1 Φ ( h j )   d n {\displaystyle {\begin{aligned}y_{N}-y(t_{N})&{}=y_{N}-\underbrace {\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})+\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})} _{=0}-y(t_{N})\\&{}=y_{N}-\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})+\underbrace {\sum _{n=0}^{N-1}\ \prod _{j=n}^{N-1}\Phi (h_{j})\ y(t_{n})-\sum _{n=1}^{N}\ \prod _{j=n}^{N-1}\Phi (h_{j})\ y(t_{n})} _{=\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})-\sum _{n=N}^{N}\left\ y(t_{n})=\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})-y(t_{N})}\\&{}=\prod _{j=0}^{N-1}\Phi (h_{j})\ y_{0}-\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})+\sum _{n=1}^{N}\ \prod _{j=n-1}^{N-1}\Phi (h_{j})\ y(t_{n-1})-\sum _{n=1}^{N}\ \prod _{j=n}^{N-1}\Phi (h_{j})\ y(t_{n})\\&{}=\prod _{j=0}^{N-1}\Phi (h_{j})\ (y_{0}-y(t_{0}))+\sum _{n=1}^{N}\ \prod _{j=n}^{N-1}\Phi (h_{j})\left\ y(t_{n-1})\\&{}=\prod _{j=0}^{N-1}\Phi (h_{j})\ (y_{0}-y(t_{0}))+\sum _{n=1}^{N}\ \prod _{j=n}^{N-1}\Phi (h_{j})\ d_{n}\end{aligned}}}

See also

Oscar Wilde's Lady Windermere's Fan
Films
Other
Category: