Misplaced Pages

Laguerre transform

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Not to be confused with Laguerre transformations.

In mathematics, Laguerre transform is an integral transform named after the mathematician Edmond Laguerre, which uses generalized Laguerre polynomials L n α ( x ) {\displaystyle L_{n}^{\alpha }(x)} as kernels of the transform.

The Laguerre transform of a function f ( x ) {\displaystyle f(x)} is

L { f ( x ) } = f ~ α ( n ) = 0 e x x α   L n α ( x )   f ( x )   d x {\displaystyle L\{f(x)\}={\tilde {f}}_{\alpha }(n)=\int _{0}^{\infty }e^{-x}x^{\alpha }\ L_{n}^{\alpha }(x)\ f(x)\ dx}

The inverse Laguerre transform is given by

L 1 { f ~ α ( n ) } = f ( x ) = n = 0 ( n + α n ) 1 1 Γ ( α + 1 ) f ~ α ( n ) L n α ( x ) {\displaystyle L^{-1}\{{\tilde {f}}_{\alpha }(n)\}=f(x)=\sum _{n=0}^{\infty }{\binom {n+\alpha }{n}}^{-1}{\frac {1}{\Gamma (\alpha +1)}}{\tilde {f}}_{\alpha }(n)L_{n}^{\alpha }(x)}

Some Laguerre transform pairs

f ( x ) {\displaystyle f(x)\,} f ~ α ( n ) {\displaystyle {\tilde {f}}_{\alpha }(n)\,}
x a 1 ,   a > 0 {\displaystyle x^{a-1},\ a>0\,} Γ ( a + α ) Γ ( n a + 1 ) n ! Γ ( 1 a ) {\displaystyle {\frac {\Gamma (a+\alpha )\Gamma (n-a+1)}{n!\Gamma (1-a)}}}
e a x ,   a > 1 {\displaystyle e^{-ax},\ a>-1\,} Γ ( n + α + 1 ) a n n ! ( a + 1 ) n + α + 1 {\displaystyle {\frac {\Gamma (n+\alpha +1)a^{n}}{n!(a+1)^{n+\alpha +1}}}}
sin a x ,   a > 0 ,   α = 0 {\displaystyle \sin ax,\ a>0,\ \alpha =0\,} a n ( 1 + a 2 ) n + 1 2 sin [ n tan 1 1 a + tan 1 ( a ) ] {\displaystyle {\frac {a^{n}}{(1+a^{2})^{\frac {n+1}{2}}}}\sin \left}
cos a x ,   a > 0 ,   α = 0 {\displaystyle \cos ax,\ a>0,\ \alpha =0\,} a n ( 1 + a 2 ) n + 1 2 cos [ n tan 1 1 a + tan 1 ( a ) ] {\displaystyle {\frac {a^{n}}{(1+a^{2})^{\frac {n+1}{2}}}}\cos \left}
L m α ( x ) {\displaystyle L_{m}^{\alpha }(x)\,} ( n + α n ) Γ ( α + 1 ) δ m n {\displaystyle {\binom {n+\alpha }{n}}\Gamma (\alpha +1)\delta _{mn}}
e a x L m α ( x ) {\displaystyle e^{-ax}L_{m}^{\alpha }(x)\,} Γ ( n + α + 1 ) Γ ( m + α + 1 ) n ! m ! Γ ( α + 1 ) ( a 1 ) n m + α + 1 a n + m + 2 α + 2 2 F 1 ( n + α + 1 ; m + α + 1 α + 1 ; 1 a 2 ) {\displaystyle {\frac {\Gamma (n+\alpha +1)\Gamma (m+\alpha +1)}{n!m!\Gamma (\alpha +1)}}{\frac {(a-1)^{n-m+\alpha +1}}{a^{n+m+2\alpha +2}}}{}_{2}F_{1}\left(n+\alpha +1;{\frac {m+\alpha +1}{\alpha +1}};{\frac {1}{a^{2}}}\right)}
f ( x ) x β α {\displaystyle f(x)x^{\beta -\alpha }\,} m = 0 n ( m ! ) 1 ( α β ) m L n m β ( x ) {\displaystyle \sum _{m=0}^{n}(m!)^{-1}(\alpha -\beta )_{m}L_{n-m}^{\beta }(x)}
e x x α Γ ( α , x ) {\displaystyle e^{x}x^{-\alpha }\Gamma (\alpha ,x)\,} n = 0 ( n + α n ) Γ ( α + 1 ) n + 1 {\displaystyle \sum _{n=0}^{\infty }{\binom {n+\alpha }{n}}{\frac {\Gamma (\alpha +1)}{n+1}}}
x β ,   β > 0 {\displaystyle x^{\beta },\ \beta >0\,} Γ ( α + β + 1 ) n = 0 ( n + α n ) ( β ) n Γ ( α + 1 ) Γ ( n + α + 1 ) {\displaystyle \Gamma (\alpha +\beta +1)\sum _{n=0}^{\infty }{\binom {n+\alpha }{n}}(-\beta )_{n}{\frac {\Gamma (\alpha +1)}{\Gamma (n+\alpha +1)}}}
( 1 z ) ( α + 1 ) exp ( x z z 1 ) ,   | z | < 1 ,   α 0 {\displaystyle (1-z)^{-(\alpha +1)}\exp \left({\frac {xz}{z-1}}\right),\ |z|<1,\ \alpha \geq 0\,} n = 0 ( n + α n ) Γ ( α + 1 ) z n {\displaystyle \sum _{n=0}^{\infty }{\binom {n+\alpha }{n}}\Gamma (\alpha +1)z^{n}}
( x z ) α / 2 e z J α [ 2 ( x z ) 1 / 2 ] ,   | z | < 1 ,   α 0 {\displaystyle (xz)^{-\alpha /2}e^{z}J_{\alpha }\left,\ |z|<1,\ \alpha \geq 0\,} n = 0 ( n + α n ) Γ ( α + 1 ) Γ ( n + α + 1 ) z n {\displaystyle \sum _{n=0}^{\infty }{\binom {n+\alpha }{n}}{\frac {\Gamma (\alpha +1)}{\Gamma (n+\alpha +1)}}z^{n}}
d d x f ( x ) {\displaystyle {\frac {d}{dx}}f(x)\,} f ~ α ( n ) α k = 0 n f ~ α 1 ( k ) + k = 0 n 1 f ~ α ( k ) {\displaystyle {\tilde {f}}_{\alpha }(n)-\alpha \sum _{k=0}^{n}{\tilde {f}}_{\alpha -1}(k)+\sum _{k=0}^{n-1}{\tilde {f}}_{\alpha }(k)}
x d d x f ( x ) , α = 0 {\displaystyle x{\frac {d}{dx}}f(x),\alpha =0\,} ( n + 1 ) f ~ 0 ( n + 1 ) + n f ~ 0 ( n ) {\displaystyle -(n+1){\tilde {f}}_{0}(n+1)+n{\tilde {f}}_{0}(n)}
0 x f ( t ) d t ,   α = 0 {\displaystyle \int _{0}^{x}f(t)dt,\ \alpha =0\,} f ~ 0 ( n ) f ~ 0 ( n 1 ) {\displaystyle {\tilde {f}}_{0}(n)-{\tilde {f}}_{0}(n-1)}
e x x α d d x [ e x x α + 1 d d x ] f ( x ) {\displaystyle e^{x}x^{-\alpha }{\frac {d}{dx}}\leftf(x)\,} n f ~ α ( n ) {\displaystyle -n{\tilde {f}}_{\alpha }(n)}
{ e x x α d d x [ e x x α + 1 d d x ] } k f ( x ) {\displaystyle \left\{e^{x}x^{-\alpha }{\frac {d}{dx}}\left\right\}^{k}f(x)\,} ( 1 ) k n k f ~ α ( n ) {\displaystyle (-1)^{k}n^{k}{\tilde {f}}_{\alpha }(n)}
L n α ( x ) , α > 1 {\displaystyle L_{n}^{\alpha }(x),\alpha >-1\,} Γ ( n + α + 1 ) n ! {\displaystyle {\frac {\Gamma (n+\alpha +1)}{n!}}}
x L n α ( x ) , α > 1 {\displaystyle xL_{n}^{\alpha }(x),\alpha >-1\,} Γ ( n + α + 1 ) n ! ( 2 n + 1 + α ) {\displaystyle {\frac {\Gamma (n+\alpha +1)}{n!}}(2n+1+\alpha )}
1 π 0 e t f ( t ) d t 0 π e x t cos θ cos ( x t sin θ ) g ( x + t 2 x t cos θ ) d θ , α = 0 {\displaystyle {\frac {1}{\pi }}\int _{0}^{\infty }e^{-t}f(t)dt\int _{0}^{\pi }e^{{\sqrt {xt}}\cos \theta }\cos({\sqrt {xt}}\sin \theta )g(x+t-2{\sqrt {xt}}\cos \theta )d\theta ,\alpha =0\,} f ~ 0 ( n ) g ~ 0 ( n ) {\displaystyle {\tilde {f}}_{0}(n){\tilde {g}}_{0}(n)}
Γ ( n + α + 1 ) π Γ ( n + 1 ) 0 e t t α f ( t ) d t 0 π e x t cos θ sin 2 α θ g ( x + t + 2 x t cos θ ) J α 1 / 2 ( x t sin θ ) [ ( x t sin θ ) / 2 ] α 1 / 2 d θ {\displaystyle {\frac {\Gamma (n+\alpha +1)}{{\sqrt {\pi }}\Gamma (n+1)}}\int _{0}^{\infty }e^{-t}t^{\alpha }f(t)dt\int _{0}^{\pi }e^{-{\sqrt {xt}}\cos \theta }\sin ^{2\alpha }\theta g(x+t+2{\sqrt {xt}}\cos \theta ){\frac {J_{\alpha -1/2}({\sqrt {xt}}\sin \theta )}{^{\alpha -1/2}}}d\theta \,} f ~ α ( n ) g ~ α ( n ) {\displaystyle {\tilde {f}}_{\alpha }(n){\tilde {g}}_{\alpha }(n)}

References

  1. Debnath, Lokenath, and Dambaru Bhatta. Integral transforms and their applications. CRC press, 2014.
  2. Debnath, L. "On Laguerre transform." Bull. Calcutta Math. Soc 52 (1960): 69-77.
  3. Debnath, L. "Application of Laguerre Transform on heat conduction problem." Annali dell’Università di Ferrara 10.1 (1961): 17-19.
  4. McCully, Joseph. "The Laguerre transform." SIAM Review 2.3 (1960): 185-191.
  5. Howell, W. T. "CI. A definite integral for legendre functions." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 25.172 (1938): 1113-1115.
  6. Debnath, L. "On Faltung theorem of Laguerre transform." Studia Univ. Babes-Bolyai, Ser. Phys 2 (1969): 41-45.
Categories: