In mathematics , the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain . The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions .
First consider the following property of the Laplace transform:
L
{
f
′
}
=
s
L
{
f
}
−
f
(
0
)
{\displaystyle {\mathcal {L}}\{f'\}=s{\mathcal {L}}\{f\}-f(0)}
L
{
f
″
}
=
s
2
L
{
f
}
−
s
f
(
0
)
−
f
′
(
0
)
{\displaystyle {\mathcal {L}}\{f''\}=s^{2}{\mathcal {L}}\{f\}-sf(0)-f'(0)}
One can prove by induction that
L
{
f
(
n
)
}
=
s
n
L
{
f
}
−
∑
i
=
1
n
s
n
−
i
f
(
i
−
1
)
(
0
)
{\displaystyle {\mathcal {L}}\{f^{(n)}\}=s^{n}{\mathcal {L}}\{f\}-\sum _{i=1}^{n}s^{n-i}f^{(i-1)}(0)}
Now we consider the following differential equation:
∑
i
=
0
n
a
i
f
(
i
)
(
t
)
=
ϕ
(
t
)
{\displaystyle \sum _{i=0}^{n}a_{i}f^{(i)}(t)=\phi (t)}
with given initial conditions
f
(
i
)
(
0
)
=
c
i
{\displaystyle f^{(i)}(0)=c_{i}}
Using the linearity of the Laplace transform it is equivalent to rewrite the equation as
∑
i
=
0
n
a
i
L
{
f
(
i
)
(
t
)
}
=
L
{
ϕ
(
t
)
}
{\displaystyle \sum _{i=0}^{n}a_{i}{\mathcal {L}}\{f^{(i)}(t)\}={\mathcal {L}}\{\phi (t)\}}
obtaining
L
{
f
(
t
)
}
∑
i
=
0
n
a
i
s
i
−
∑
i
=
1
n
∑
j
=
1
i
a
i
s
i
−
j
f
(
j
−
1
)
(
0
)
=
L
{
ϕ
(
t
)
}
{\displaystyle {\mathcal {L}}\{f(t)\}\sum _{i=0}^{n}a_{i}s^{i}-\sum _{i=1}^{n}\sum _{j=1}^{i}a_{i}s^{i-j}f^{(j-1)}(0)={\mathcal {L}}\{\phi (t)\}}
Solving the equation for
L
{
f
(
t
)
}
{\displaystyle {\mathcal {L}}\{f(t)\}}
and substituting
f
(
i
)
(
0
)
{\displaystyle f^{(i)}(0)}
with
c
i
{\displaystyle c_{i}}
one obtains
L
{
f
(
t
)
}
=
L
{
ϕ
(
t
)
}
+
∑
i
=
1
n
∑
j
=
1
i
a
i
s
i
−
j
c
j
−
1
∑
i
=
0
n
a
i
s
i
{\displaystyle {\mathcal {L}}\{f(t)\}={\frac {{\mathcal {L}}\{\phi (t)\}+\sum _{i=1}^{n}\sum _{j=1}^{i}a_{i}s^{i-j}c_{j-1}}{\sum _{i=0}^{n}a_{i}s^{i}}}}
The solution for f (t ) is obtained by applying the inverse Laplace transform to
L
{
f
(
t
)
}
.
{\displaystyle {\mathcal {L}}\{f(t)\}.}
Note that if the initial conditions are all zero, i.e.
f
(
i
)
(
0
)
=
c
i
=
0
∀
i
∈
{
0
,
1
,
2
,
.
.
.
n
}
{\displaystyle f^{(i)}(0)=c_{i}=0\quad \forall i\in \{0,1,2,...\ n\}}
then the formula simplifies to
f
(
t
)
=
L
−
1
{
L
{
ϕ
(
t
)
}
∑
i
=
0
n
a
i
s
i
}
{\displaystyle f(t)={\mathcal {L}}^{-1}\left\{{{\mathcal {L}}\{\phi (t)\} \over \sum _{i=0}^{n}a_{i}s^{i}}\right\}}
An example
We want to solve
f
″
(
t
)
+
4
f
(
t
)
=
sin
(
2
t
)
{\displaystyle f''(t)+4f(t)=\sin(2t)}
with initial conditions f (0) = 0 and f′ (0)=0.
We note that
ϕ
(
t
)
=
sin
(
2
t
)
{\displaystyle \phi (t)=\sin(2t)}
and we get
L
{
ϕ
(
t
)
}
=
2
s
2
+
4
{\displaystyle {\mathcal {L}}\{\phi (t)\}={\frac {2}{s^{2}+4}}}
The equation is then equivalent to
s
2
L
{
f
(
t
)
}
−
s
f
(
0
)
−
f
′
(
0
)
+
4
L
{
f
(
t
)
}
=
L
{
ϕ
(
t
)
}
{\displaystyle s^{2}{\mathcal {L}}\{f(t)\}-sf(0)-f'(0)+4{\mathcal {L}}\{f(t)\}={\mathcal {L}}\{\phi (t)\}}
We deduce
L
{
f
(
t
)
}
=
2
(
s
2
+
4
)
2
{\displaystyle {\mathcal {L}}\{f(t)\}={\frac {2}{(s^{2}+4)^{2}}}}
Now we apply the Laplace inverse transform to get
f
(
t
)
=
1
8
sin
(
2
t
)
−
t
4
cos
(
2
t
)
{\displaystyle f(t)={\frac {1}{8}}\sin(2t)-{\frac {t}{4}}\cos(2t)}
Bibliography
A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists , Chapman & Hall/CRC Press, Boca Raton, 2002. ISBN 1-58488-299-9
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑