Misplaced Pages

Lehmer's totient problem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Unsolved problem in mathematics For Lehmer's Mahler measure problem, see Lehmer's conjecture. Unsolved problem in mathematics: Can the totient function of a composite number n {\displaystyle n} divide n 1 {\displaystyle n-1} ? (more unsolved problems in mathematics)

In mathematics, Lehmer's totient problem asks whether there is any composite number n such that Euler's totient function φ(n) divides n − 1. This is an unsolved problem.

It is known that φ(n) = n − 1 if and only if n is prime. So for every prime number n, we have φ(n) = n − 1 and thus in particular φ(n) divides n − 1. D. H. Lehmer conjectured in 1932 that there are no composite numbers with this property.

History

  • Lehmer showed that if any composite solution n exists, it must be odd, square-free, and divisible by at least seven distinct primes (i.e. ω(n) ≥ 7). Such a number must also be a Carmichael number.
  • In 1980, Cohen and Hagis proved that, for any solution n to the problem, n > 10 and ω(n) ≥ 14.
  • In 1988, Hagis showed that if 3 divides any solution n, then n > 10 and ω(n) ≥ 298848. This was subsequently improved by Burcsi, Czirbusz, and Farkas, who showed that if 3 divides any solution n, then n > 10 and ω(n) ≥ 40000000.
  • A result from 2011 states that the number of solutions to the problem less than X {\displaystyle X} is at most X 1 / 2 / ( log X ) 1 / 2 + o ( 1 ) {\displaystyle {X^{1/2}/(\log X)^{1/2+o(1)}}} .

References

  1. Lehmer (1932)
  2. Sándor et al (2006) p.23
  3. Guy (2004) p.142
  4. Burcsi, P., Czirbusz, S., Farkas, G. (2011). "Computational investigation of Lehmer's totient problem". Ann. Univ. Sci. Budapest. Sect. Comput. 35: 43–49.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. Luca and Pomerance (2011)
Categories: