Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
Mathematical Inequality
In the mathematical theory of probability, Lenglart's inequality was proved by Èrik Lenglart in 1977. Later slight modifications are also called Lenglart's inequality.
Lenglart 1977, Théorème I and Corollaire II, pp. 171−179
General sources
Geiss, Sarah; Scheutzow, Michael (2021). "Sharpness of Lenglart's domination inequality and a sharp monotone version". Electronic Communications in Probability. 26: 1–8. arXiv:2101.10884. doi:10.1214/21-ECP413. S2CID231709277.
Lenglart, Érik (1977). "Relation de domination entre deux processus". Annales de l'Institut Henri Poincaré B. 13 (2): 171−179.
Mehri, Sima; Scheutzow, Michael (2021). "A stochastic Gronwall lemma and well-posedness of path-dependent SDEs driven by martingale noise". Latin Americal Journal of Probability and Mathematical Statistics. 18: 193−209. arXiv:1908.10646. doi:10.30757/ALEA.v18-09. S2CID201660248.
Ren, Yaofeng; Schen, Jing (2012). "A note on the domination inequalities and their applications". Statist. Probab. Lett. 82 (6): 1160−1168. doi:10.1016/j.spl.2012.03.002.
Revuz, Daniel; Yor, Marc (1999). Continuous Martingales and Brownian Motion. Berlin: Springer. ISBN3-540-64325-7.