Misplaced Pages

Lenglart's inequality

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Mathematical Inequality

In the mathematical theory of probability, Lenglart's inequality was proved by Èrik Lenglart in 1977. Later slight modifications are also called Lenglart's inequality.

Statement

Let X be a non-negative right-continuous F t {\displaystyle {\mathcal {F}}_{t}} -adapted process and let G be a non-negative right-continuous non-decreasing predictable process such that E [ X ( τ ) F 0 ] E [ G ( τ ) F 0 ] < {\displaystyle \mathbb {E} \leq \mathbb {E} <\infty } for any bounded stopping time τ {\displaystyle \tau } . Then

  1. c , d > 0 , P ( sup t 0 X ( t ) > c | F 0 ) 1 c E [ sup t 0 G ( t ) d | F 0 ] + P ( sup t 0 G ( t ) d | F 0 ) . {\displaystyle \forall c,d>0,\mathbb {P} \left(\sup _{t\geq 0}X(t)>c\,{\Big \vert }{\mathcal {F}}_{0}\right)\leq {\frac {1}{c}}\mathbb {E} \left+\mathbb {P} \left(\sup _{t\geq 0}G(t)\geq d\,{\Big \vert }{\mathcal {F}}_{0}\right).}
  2. p ( 0 , 1 ) , E [ ( sup t 0 X ( t ) ) p | F 0 ] c p E [ ( sup t 0 G ( t ) ) p | F 0 ] ,  where  c p := p p 1 p . {\displaystyle \forall p\in (0,1),\mathbb {E} \left\leq c_{p}\mathbb {E} \left,{\text{ where }}c_{p}:={\frac {p^{-p}}{1-p}}.}

References

Citations

  1. Lenglart 1977, Théorème I and Corollaire II, pp. 171−179

General sources

  • Geiss, Sarah; Scheutzow, Michael (2021). "Sharpness of Lenglart's domination inequality and a sharp monotone version". Electronic Communications in Probability. 26: 1–8. arXiv:2101.10884. doi:10.1214/21-ECP413. S2CID 231709277.
  • Lenglart, Érik (1977). "Relation de domination entre deux processus". Annales de l'Institut Henri Poincaré B. 13 (2): 171−179.
  • Mehri, Sima; Scheutzow, Michael (2021). "A stochastic Gronwall lemma and well-posedness of path-dependent SDEs driven by martingale noise". Latin Americal Journal of Probability and Mathematical Statistics. 18: 193−209. arXiv:1908.10646. doi:10.30757/ALEA.v18-09. S2CID 201660248.
  • Ren, Yaofeng; Schen, Jing (2012). "A note on the domination inequalities and their applications". Statist. Probab. Lett. 82 (6): 1160−1168. doi:10.1016/j.spl.2012.03.002.
  • Revuz, Daniel; Yor, Marc (1999). Continuous Martingales and Brownian Motion. Berlin: Springer. ISBN 3-540-64325-7.
Categories: