Misplaced Pages

Lie algebra–valued differential form

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Lie algebra-valued forms)

In differential geometry, a Lie-algebra-valued form is a differential form with values in a Lie algebra. Such forms have important applications in the theory of connections on a principal bundle as well as in the theory of Cartan connections.

Formal definition

A Lie-algebra-valued differential k {\displaystyle k} -form on a manifold, M {\displaystyle M} , is a smooth section of the bundle ( g × M ) k T M {\displaystyle ({\mathfrak {g}}\times M)\otimes \wedge ^{k}T^{*}M} , where g {\displaystyle {\mathfrak {g}}} is a Lie algebra, T M {\displaystyle T^{*}M} is the cotangent bundle of M {\displaystyle M} and k {\displaystyle \wedge ^{k}} denotes the k th {\displaystyle k^{\text{th}}} exterior power.

Wedge product

The wedge product of ordinary, real-valued differential forms is defined using multiplication of real numbers. For a pair of Lie algebra–valued differential forms, the wedge product can be defined similarly, but substituting the bilinear Lie bracket operation, to obtain another Lie algebra–valued form. For a g {\displaystyle {\mathfrak {g}}} -valued p {\displaystyle p} -form ω {\displaystyle \omega } and a g {\displaystyle {\mathfrak {g}}} -valued q {\displaystyle q} -form η {\displaystyle \eta } , their wedge product [ ω η ] {\displaystyle } is given by

[ ω η ] ( v 1 , , v p + q ) = 1 p ! q ! σ sgn ( σ ) [ ω ( v σ ( 1 ) , , v σ ( p ) ) , η ( v σ ( p + 1 ) , , v σ ( p + q ) ) ] , {\displaystyle (v_{1},\dotsc ,v_{p+q})={1 \over p!q!}\sum _{\sigma }\operatorname {sgn} (\sigma ),}

where the v i {\displaystyle v_{i}} 's are tangent vectors. The notation is meant to indicate both operations involved. For example, if ω {\displaystyle \omega } and η {\displaystyle \eta } are Lie-algebra-valued one forms, then one has

[ ω η ] ( v 1 , v 2 ) = [ ω ( v 1 ) , η ( v 2 ) ] [ ω ( v 2 ) , η ( v 1 ) ] . {\displaystyle (v_{1},v_{2})=-.}

The operation [ ω η ] {\displaystyle } can also be defined as the bilinear operation on Ω ( M , g ) {\displaystyle \Omega (M,{\mathfrak {g}})} satisfying

[ ( g α ) ( h β ) ] = [ g , h ] ( α β ) {\displaystyle =\otimes (\alpha \wedge \beta )}

for all g , h g {\displaystyle g,h\in {\mathfrak {g}}} and α , β Ω ( M , R ) {\displaystyle \alpha ,\beta \in \Omega (M,\mathbb {R} )} .

Some authors have used the notation [ ω , η ] {\displaystyle } instead of [ ω η ] {\displaystyle } . The notation [ ω , η ] {\displaystyle } , which resembles a commutator, is justified by the fact that if the Lie algebra g {\displaystyle {\mathfrak {g}}} is a matrix algebra then [ ω η ] {\displaystyle } is nothing but the graded commutator of ω {\displaystyle \omega } and η {\displaystyle \eta } , i. e. if ω Ω p ( M , g ) {\displaystyle \omega \in \Omega ^{p}(M,{\mathfrak {g}})} and η Ω q ( M , g ) {\displaystyle \eta \in \Omega ^{q}(M,{\mathfrak {g}})} then

[ ω η ] = ω η ( 1 ) p q η ω , {\displaystyle =\omega \wedge \eta -(-1)^{pq}\eta \wedge \omega ,}

where ω η ,   η ω Ω p + q ( M , g ) {\displaystyle \omega \wedge \eta ,\ \eta \wedge \omega \in \Omega ^{p+q}(M,{\mathfrak {g}})} are wedge products formed using the matrix multiplication on g {\displaystyle {\mathfrak {g}}} .

Operations

Let f : g h {\displaystyle f:{\mathfrak {g}}\to {\mathfrak {h}}} be a Lie algebra homomorphism. If φ {\displaystyle \varphi } is a g {\displaystyle {\mathfrak {g}}} -valued form on a manifold, then f ( φ ) {\displaystyle f(\varphi )} is an h {\displaystyle {\mathfrak {h}}} -valued form on the same manifold obtained by applying f {\displaystyle f} to the values of φ {\displaystyle \varphi } : f ( φ ) ( v 1 , , v k ) = f ( φ ( v 1 , , v k ) ) {\displaystyle f(\varphi )(v_{1},\dotsc ,v_{k})=f(\varphi (v_{1},\dotsc ,v_{k}))} .

Similarly, if f {\displaystyle f} is a multilinear functional on 1 k g {\displaystyle \textstyle \prod _{1}^{k}{\mathfrak {g}}} , then one puts

f ( φ 1 , , φ k ) ( v 1 , , v q ) = 1 q ! σ sgn ( σ ) f ( φ 1 ( v σ ( 1 ) , , v σ ( q 1 ) ) , , φ k ( v σ ( q q k + 1 ) , , v σ ( q ) ) ) {\displaystyle f(\varphi _{1},\dotsc ,\varphi _{k})(v_{1},\dotsc ,v_{q})={1 \over q!}\sum _{\sigma }\operatorname {sgn} (\sigma )f(\varphi _{1}(v_{\sigma (1)},\dotsc ,v_{\sigma (q_{1})}),\dotsc ,\varphi _{k}(v_{\sigma (q-q_{k}+1)},\dotsc ,v_{\sigma (q)}))}

where q = q 1 + + q k {\displaystyle q=q_{1}+\ldots +q_{k}} and φ i {\displaystyle \varphi _{i}} are g {\displaystyle {\mathfrak {g}}} -valued q i {\displaystyle q_{i}} -forms. Moreover, given a vector space V {\displaystyle V} , the same formula can be used to define the V {\displaystyle V} -valued form f ( φ , η ) {\displaystyle f(\varphi ,\eta )} when

f : g × V V {\displaystyle f:{\mathfrak {g}}\times V\to V}

is a multilinear map, φ {\displaystyle \varphi } is a g {\displaystyle {\mathfrak {g}}} -valued form and η {\displaystyle \eta } is a V {\displaystyle V} -valued form. Note that, when

f ( [ x , y ] , z ) = f ( x , f ( y , z ) ) f ( y , f ( x , z ) ) , ( ) {\displaystyle f(,z)=f(x,f(y,z))-f(y,f(x,z)){,}\qquad (*)}

giving f {\displaystyle f} amounts to giving an action of g {\displaystyle {\mathfrak {g}}} on V {\displaystyle V} ; i.e., f {\displaystyle f} determines the representation

ρ : g V , ρ ( x ) y = f ( x , y ) {\displaystyle \rho :{\mathfrak {g}}\to V,\rho (x)y=f(x,y)}

and, conversely, any representation ρ {\displaystyle \rho } determines f {\displaystyle f} with the condition ( ) {\displaystyle (*)} . For example, if f ( x , y ) = [ x , y ] {\displaystyle f(x,y)=} (the bracket of g {\displaystyle {\mathfrak {g}}} ), then we recover the definition of [ ] {\displaystyle } given above, with ρ = ad {\displaystyle \rho =\operatorname {ad} } , the adjoint representation. (Note the relation between f {\displaystyle f} and ρ {\displaystyle \rho } above is thus like the relation between a bracket and ad {\displaystyle \operatorname {ad} } .)

In general, if α {\displaystyle \alpha } is a g l ( V ) {\displaystyle {\mathfrak {gl}}(V)} -valued p {\displaystyle p} -form and φ {\displaystyle \varphi } is a V {\displaystyle V} -valued q {\displaystyle q} -form, then one more commonly writes α φ = f ( α , φ ) {\displaystyle \alpha \cdot \varphi =f(\alpha ,\varphi )} when f ( T , x ) = T x {\displaystyle f(T,x)=Tx} . Explicitly,

( α ϕ ) ( v 1 , , v p + q ) = 1 ( p + q ) ! σ sgn ( σ ) α ( v σ ( 1 ) , , v σ ( p ) ) ϕ ( v σ ( p + 1 ) , , v σ ( p + q ) ) . {\displaystyle (\alpha \cdot \phi )(v_{1},\dotsc ,v_{p+q})={1 \over (p+q)!}\sum _{\sigma }\operatorname {sgn} (\sigma )\alpha (v_{\sigma (1)},\dotsc ,v_{\sigma (p)})\phi (v_{\sigma (p+1)},\dotsc ,v_{\sigma (p+q)}).}

With this notation, one has for example:

ad ( α ) ϕ = [ α ϕ ] {\displaystyle \operatorname {ad} (\alpha )\cdot \phi =} .

Example: If ω {\displaystyle \omega } is a g {\displaystyle {\mathfrak {g}}} -valued one-form (for example, a connection form), ρ {\displaystyle \rho } a representation of g {\displaystyle {\mathfrak {g}}} on a vector space V {\displaystyle V} and φ {\displaystyle \varphi } a V {\displaystyle V} -valued zero-form, then

ρ ( [ ω ω ] ) φ = 2 ρ ( ω ) ( ρ ( ω ) φ ) . {\displaystyle \rho ()\cdot \varphi =2\rho (\omega )\cdot (\rho (\omega )\cdot \varphi ).}

Forms with values in an adjoint bundle

See also: adjoint bundle

Let P {\displaystyle P} be a smooth principal bundle with structure group G {\displaystyle G} and g = Lie ( G ) {\displaystyle {\mathfrak {g}}=\operatorname {Lie} (G)} . G {\displaystyle G} acts on g {\displaystyle {\mathfrak {g}}} via adjoint representation and so one can form the associated bundle:

g P = P × Ad g . {\displaystyle {\mathfrak {g}}_{P}=P\times _{\operatorname {Ad} }{\mathfrak {g}}.}

Any g P {\displaystyle {\mathfrak {g}}_{P}} -valued forms on the base space of P {\displaystyle P} are in a natural one-to-one correspondence with any tensorial forms on P {\displaystyle P} of adjoint type.

See also

Notes

  1. S. Kobayashi, K. Nomizu. Foundations of Differential Geometry (Wiley Classics Library) Volume 1, 2. Chapter XII, § 1.}}
  2. Since ρ ( [ ω ω ] ) ( v , w ) = ρ ( [ ω ω ] ( v , w ) ) = ρ ( [ ω ( v ) , ω ( w ) ] ) = ρ ( ω ( v ) ) ρ ( ω ( w ) ) ρ ( ω ( w ) ) ρ ( ω ( v ) ) {\displaystyle \rho ()(v,w)=\rho ((v,w))=\rho ()=\rho (\omega (v))\rho (\omega (w))-\rho (\omega (w))\rho (\omega (v))} , we have that
    ( ρ ( [ ω ω ] ) φ ) ( v , w ) = 1 2 ( ρ ( [ ω ω ] ) ( v , w ) φ ρ ( [ ω ω ] ) ( w , v ) ϕ ) {\displaystyle (\rho ()\cdot \varphi )(v,w)={1 \over 2}(\rho ()(v,w)\varphi -\rho ()(w,v)\phi )}
    is ρ ( ω ( v ) ) ρ ( ω ( w ) ) φ ρ ( ω ( w ) ) ρ ( ω ( v ) ) ϕ = 2 ( ρ ( ω ) ( ρ ( ω ) ϕ ) ) ( v , w ) . {\displaystyle \rho (\omega (v))\rho (\omega (w))\varphi -\rho (\omega (w))\rho (\omega (v))\phi =2(\rho (\omega )\cdot (\rho (\omega )\cdot \phi ))(v,w).}

References

External links

Categories: