Misplaced Pages

Lissajous knot

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Knot defined by parametric equations defining Lissajous curves

In knot theory, a Lissajous knot is a knot defined by parametric equations of the form

x = cos ( n x t + ϕ x ) , y = cos ( n y t + ϕ y ) , z = cos ( n z t + ϕ z ) , {\displaystyle x=\cos(n_{x}t+\phi _{x}),\qquad y=\cos(n_{y}t+\phi _{y}),\qquad z=\cos(n_{z}t+\phi _{z}),}
A Lissajous 821 knot

where n x {\displaystyle n_{x}} , n y {\displaystyle n_{y}} , and n z {\displaystyle n_{z}} are integers and the phase shifts ϕ x {\displaystyle \phi _{x}} , ϕ y {\displaystyle \phi _{y}} , and ϕ z {\displaystyle \phi _{z}} may be any real numbers.

The projection of a Lissajous knot onto any of the three coordinate planes is a Lissajous curve, and many of the properties of these knots are closely related to properties of Lissajous curves.

Replacing the cosine function in the parametrization by a triangle wave transforms every Lissajous knot isotopically into a billiard curve inside a cube, the simplest case of so-called billiard knots. Billiard knots can also be studied in other domains, for instance in a cylinder or in a (flat) solid torus (Lissajous-toric knot).

Form

Because a knot cannot be self-intersecting, the three integers n x , n y , n z {\displaystyle n_{x},n_{y},n_{z}} must be pairwise relatively prime, and none of the quantities

n x ϕ y n y ϕ x , n y ϕ z n z ϕ y , n z ϕ x n x ϕ z {\displaystyle n_{x}\phi _{y}-n_{y}\phi _{x},\quad n_{y}\phi _{z}-n_{z}\phi _{y},\quad n_{z}\phi _{x}-n_{x}\phi _{z}}

may be an integer multiple of pi. Moreover, by making a substitution of the form t = t + c {\displaystyle t'=t+c} , one may assume that any of the three phase shifts ϕ x {\displaystyle \phi _{x}} , ϕ y {\displaystyle \phi _{y}} , ϕ z {\displaystyle \phi _{z}} is equal to zero.

Examples

Here are some examples of Lissajous knots, all of which have ϕ z = 0 {\displaystyle \phi _{z}=0} :

  • Three-twist knot '"`UNIQ--postMath-0000000F-QINU`"' '"`UNIQ--postMath-00000010-QINU`"' Three-twist knot
    ( n x , n y , n z ) = ( 3 , 2 , 7 ) {\displaystyle (n_{x},n_{y},n_{z})=(3,2,7)}
    ( ϕ x , ϕ y ) = ( 0.7 , 0.2 ) {\displaystyle (\phi _{x},\phi _{y})=(0.7,0.2)}
  • Stevedore knot '"`UNIQ--postMath-00000011-QINU`"' '"`UNIQ--postMath-00000012-QINU`"' Stevedore knot
    ( n x , n y , n z ) = ( 3 , 2 , 5 ) {\displaystyle (n_{x},n_{y},n_{z})=(3,2,5)}
    ( ϕ x , ϕ y ) = ( 1.5 , 0.2 ) {\displaystyle (\phi _{x},\phi _{y})=(1.5,0.2)}
  • Square knot '"`UNIQ--postMath-00000013-QINU`"' '"`UNIQ--postMath-00000014-QINU`"' Square knot
    ( n x , n y , n z ) = ( 3 , 5 , 7 ) {\displaystyle (n_{x},n_{y},n_{z})=(3,5,7)}
    ( ϕ x , ϕ y ) = ( 0.7 , 1.0 ) {\displaystyle (\phi _{x},\phi _{y})=(0.7,1.0)}
  • 821 knot '"`UNIQ--postMath-00000015-QINU`"' '"`UNIQ--postMath-00000016-QINU`"' 821 knot
    ( n x , n y , n z ) = ( 3 , 4 , 7 ) {\displaystyle (n_{x},n_{y},n_{z})=(3,4,7)}
    ( ϕ x , ϕ y ) = ( 0.1 , 0.7 ) {\displaystyle (\phi _{x},\phi _{y})=(0.1,0.7)}

There are infinitely many different Lissajous knots, and other examples with 10 or fewer crossings include the 74 knot, the 815 knot, the 101 knot, the 1035 knot, the 1058 knot, and the composite knot 52 # 52, as well as the 916 knot, 1076 knot, the 1099 knot, the 10122 knot, the 10144 knot, the granny knot, and the composite knot 52 # 52. In addition, it is known that every twist knot with Arf invariant zero is a Lissajous knot.

Symmetry

Lissajous knots are highly symmetric, though the type of symmetry depends on whether or not the numbers n x {\displaystyle n_{x}} , n y {\displaystyle n_{y}} , and n z {\displaystyle n_{z}} are all odd.

Odd case

If n x {\displaystyle n_{x}} , n y {\displaystyle n_{y}} , and n z {\displaystyle n_{z}} are all odd, then the point reflection across the origin ( x , y , z ) ( x , y , z ) {\displaystyle (x,y,z)\mapsto (-x,-y,-z)} is a symmetry of the Lissajous knot which preserves the knot orientation.

In general, a knot that has an orientation-preserving point reflection symmetry is known as strongly positive amphicheiral. This is a fairly rare property: only seven prime knots with twelve or fewer crossings are strongly positive amphicheiral (1099, 10123, 12a427, 12a1019, 12a1105, 12a1202, 12n706). Since this is so rare, ′most′ prime Lissajous knots lie in the even case.

Even case

If one of the frequencies (say n x {\displaystyle n_{x}} ) is even, then the 180° rotation around the x-axis ( x , y , z ) ( x , y , z ) {\displaystyle (x,y,z)\mapsto (x,-y,-z)} is a symmetry of the Lissajous knot. In general, a knot that has a symmetry of this type is called 2-periodic, so every even Lissajous knot must be 2-periodic.

Consequences

A Lissajous knot with three factors: ( n x , n y , n z ) = ( 4 , 5 , 41 ) {\displaystyle (n_{x},n_{y},n_{z})=(4,5,41)} ,
( ϕ x , ϕ y ) = ( 0.01 , 0.16 ) {\displaystyle (\phi _{x},\phi _{y})=(0.01,0.16)}

The symmetry of a Lissajous knot puts severe constraints on the Alexander polynomial. In the odd case, the Alexander polynomial of the Lissajous knot must be a perfect square. In the even case, the Alexander polynomial must be a perfect square modulo 2. In addition, the Arf invariant of a Lissajous knot must be zero. It follows that:

References

  1. ^ Bogle, M. G. V.; Hearst, J. E.; Jones, V. F. R.; Stoilov, L. (1994). "Lissajous knots". Journal of Knot Theory and Its Ramifications. 3 (2): 121–140. doi:10.1142/S0218216594000095.
  2. Lamm, Christoph; Obermeyer, Daniel (1999). "Billiard knots in a cylinder". Journal of Knot Theory and Its Ramifications. 8 (3): 353–366. arXiv:math/9811006. Bibcode:1998math.....11006L. doi:10.1142/S0218216599000225. S2CID 17489206.
  3. Cromwell, Peter R. (2004). Knots and links. Cambridge, UK: Cambridge University Press. p. 13. ISBN 978-0-521-54831-1.
  4. Lamm, C. (1997). "There are infinitely many Lissajous knots". Manuscripta Mathematica. 93: 29–37. doi:10.1007/BF02677455. S2CID 123288245.
  5. Boocher, Adam; Daigle, Jay; Hoste, Jim; Zheng, Wenjing (2007). "Sampling Lissajous and Fourier knots". arXiv:0707.4210 .
  6. Hoste, Jim; Zirbel, Laura (2006). "Lissajous knots and knots with Lissajous projections". arXiv:math.GT/0605632.
  7. Przytycki, Jozef H. (2004). "Symmetric knots and billiard knots". In Stasiak, A.; Katrich, V.; Kauffman, L. (eds.). Ideal Knots. Series on Knots and Everything. Vol. 19. World Scientific. pp. 374–414. arXiv:math/0405151. Bibcode:2004math......5151P.
  8. See Lamm, Christoph (2023). "Strongly positive amphicheiral knots with doubly symmetric diagrams". arXiv:2310.05106 . This article contains a complete list of prime strongly positive amphicheiral knots up to 16 crossings.
  9. Hartley, R.; Kawauchi, A (1979). "Polynomials of amphicheiral knots". Mathematische Annalen. 243: 63–70. doi:10.1007/bf01420207. S2CID 120648664.
  10. Murasugi, K. (1971). "On periodic knots". Commentarii Mathematici Helvetici. 46: 162–174. doi:10.1007/bf02566836. S2CID 120483606.
Category: