Misplaced Pages

List of equations in nuclear and particle physics

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Nuclear physics
Models of the nucleus
Nuclides' classification
Nuclear stability
Radioactive decay
Nuclear fission
Capturing processes
High-energy processes
Nucleosynthesis and
nuclear astrophysics
High-energy nuclear physics
Scientists

This article summarizes equations in the theory of nuclear physics and particle physics.

Definitions

Quantity

(common name/s)

(Common) symbol/s Defining equation SI units Dimension
Number of atoms N = Number of atoms remaining at time t

N0 = Initial number of atoms at time t = 0
ND = Number of atoms decayed at time t

N 0 = N + N D {\displaystyle N_{0}=N+N_{D}\,\!} dimensionless dimensionless
Decay rate, activity of a radioisotope A A = λ N {\displaystyle A=\lambda N\,\!} Bq = Hz = s
Decay constant λ λ = A / N {\displaystyle \lambda =A/N\,\!} Bq = Hz = s
Half-life of a radioisotope t1/2, T1/2 Time taken for half the number of atoms present to decay

t t + T 1 / 2 {\displaystyle t\rightarrow t+T_{1/2}\,\!}
N N / 2 {\displaystyle N\rightarrow N/2\,\!}

s
Number of half-lives n (no standard symbol) n = t / T 1 / 2 {\displaystyle n=t/T_{1/2}\,\!} dimensionless dimensionless
Radioisotope time constant, mean lifetime of an atom before decay τ (no standard symbol) τ = 1 / λ {\displaystyle \tau =1/\lambda \,\!} s
Absorbed dose, total ionizing dose (total energy of radiation transferred to unit mass) D can only be found experimentally N/A Gy = 1 J/kg (Gray)
Equivalent dose H H = D Q {\displaystyle H=DQ\,\!}

Q = radiation quality factor (dimensionless)

Sv = J kg (Sievert)
Effective dose E E = j H j W j {\displaystyle E=\sum _{j}H_{j}W_{j}\,\!}

Wj = weighting factors corresponding to radiosensitivities of matter (dimensionless)

j W j = 1 {\displaystyle \sum _{j}W_{j}=1\,\!}

Sv = J kg (Sievert)

Equations

Nuclear structure

Physical situation Nomenclature Equations
Mass number
  • A = (Relative) atomic mass = Mass number = Sum of protons and neutrons
  • N = Number of neutrons
  • Z = Atomic number = Number of protons = Number of electrons
A = Z + N {\displaystyle A=Z+N\,\!}
Mass in nuclei
  • M'nuc = Mass of nucleus, bound nucleons
  • MΣ = Sum of masses for isolated nucleons
  • mp = proton rest mass
  • mn = neutron rest mass
  • M Σ = Z m p + N m n {\displaystyle M_{\Sigma }=Zm_{p}+Nm_{n}\,\!}
  • M Σ > M N {\displaystyle M_{\Sigma }>M_{N}\,\!}
  • Δ M = M Σ M n u c {\displaystyle \Delta M=M_{\Sigma }-M_{\mathrm {nuc} }\,\!}
  • Δ E = Δ M c 2 {\displaystyle \Delta E=\Delta Mc^{2}\,\!}
Nuclear radius r0 ≈ 1.2 fm r = r 0 A 1 / 3 {\displaystyle r=r_{0}A^{1/3}\,\!}

hence (approximately)

  • nuclear volume ∝ A
  • nuclear surface ∝ A
Nuclear binding energy, empirical curve Dimensionless parameters to fit experiment:
  • EB = binding energy,
  • av = nuclear volume coefficient,
  • as = nuclear surface coefficient,
  • ac = electrostatic interaction coefficient,
  • aa = symmetry/asymmetry extent coefficient for the numbers of neutrons/protons,
E B = a v A a s A 2 / 3 a c Z ( Z 1 ) A 1 / 3 a a ( N Z ) 2 A 1 + 12 δ ( N , Z ) A 1 / 2 {\displaystyle {\begin{aligned}E_{B}=&a_{v}A-a_{s}A^{2/3}-a_{c}Z(Z-1)A^{-1/3}\\&-a_{a}(N-Z)^{2}A^{-1}+12\delta (N,Z)A^{-1/2}\\\end{aligned}}} where (due to pairing of nuclei)
  • δ(N, Z) = +1 even N, even Z,
  • δ(N, Z) = −1 odd N, odd Z,
  • δ(N, Z) = 0 odd A

Nuclear decay

Physical situation Nomenclature Equations
Radioactive decay
  • N0 = Initial number of atoms
  • N = Number of atoms at time t
  • λ = Decay constant
  • t = Time
Statistical decay of a radionuclide:

d N d t = λ N {\displaystyle {\frac {\mathrm {d} N}{\mathrm {d} t}}=-\lambda N}

N = N 0 e λ t {\displaystyle N=N_{0}e^{-\lambda t}\,\!}

Bateman's equations c i = j = 1 , i j D λ j λ j λ i {\displaystyle c_{i}=\prod _{j=1,i\neq j}^{D}{\frac {\lambda _{j}}{\lambda _{j}-\lambda _{i}}}} N D = N 1 ( 0 ) λ D i = 1 D λ i c i e λ i t {\displaystyle N_{D}={\frac {N_{1}(0)}{\lambda _{D}}}\sum _{i=1}^{D}\lambda _{i}c_{i}e^{-\lambda _{i}t}}
Radiation flux
  • I0 = Initial intensity/Flux of radiation
  • I = Number of atoms at time t
  • μ = Linear absorption coefficient
  • x = Thickness of substance
I = I 0 e μ x {\displaystyle I=I_{0}e^{-\mu x}\,\!}

Nuclear scattering theory

The following apply for the nuclear reaction:

a + bRc

in the centre of mass frame, where a and b are the initial species about to collide, c is the final species, and R is the resonant state.

Physical situation Nomenclature Equations
Breit-Wigner formula
  • E0 = Resonant energy
  • Γ, Γab, Γc are widths of R, a + b, c respectively
  • k = incoming wavenumber
  • s = spin angular momenta of a and b
  • J = total angular momentum of R
Cross-section:

σ ( E ) = π g k 2 Γ a b Γ c ( E E 0 ) 2 + Γ 2 / 4 {\displaystyle \sigma (E)={\frac {\pi g}{k^{2}}}{\frac {\Gamma _{ab}\Gamma _{c}}{(E-E_{0})^{2}+\Gamma ^{2}/4}}}

Spin factor:

g = 2 J + 1 ( 2 s a + 1 ) ( 2 s b + 1 ) {\displaystyle g={\frac {2J+1}{(2s_{a}+1)(2s_{b}+1)}}}

Total width:

Γ = Γ a b + Γ c {\displaystyle \Gamma =\Gamma _{ab}+\Gamma _{c}}

Resonance lifetime:

τ = / Γ {\displaystyle \tau =\hbar /\Gamma }

Born scattering
  • r = radial distance
  • μ = Scattering angle
  • A = 2 (spin-0), −1 (spin-half particles)
  • Δk = change in wavevector due to scattering
  • V = total interaction potential
  • V = total interaction potential
Differential cross-section:

d σ d Ω = | 2 μ 2 0 sin ( Δ k r ) Δ k r V ( r ) r 2 d r | 2 {\displaystyle {\frac {d\sigma }{d\Omega }}=\left|{\frac {2\mu }{\hbar ^{2}}}\int _{0}^{\infty }{\frac {\sin(\Delta kr)}{\Delta kr}}V(r)r^{2}dr\right|^{2}}

Mott scattering
  • χ = reduced mass of a and b
  • v = incoming velocity
Differential cross-section (for identical particles in a coulomb potential, in centre of mass frame):

d σ d Ω = ( α 4 E ) [ csc 4 χ 2 + sec 4 χ 2 + A cos ( α ν ln tan 2 χ 2 ) sin 2 χ 2 cos χ 2 ] 2 {\displaystyle {\frac {d\sigma }{d\Omega }}=\left({\frac {\alpha }{4E}}\right)\left^{2}}

Scattering potential energy (α = constant):

V = α / r {\displaystyle V=-\alpha /r}

Rutherford scattering Differential cross-section (non-identical particles in a coulomb potential):

d σ d Ω = ( 1 n ) d N d Ω = ( α 4 E ) 2 csc 4 χ 2 {\displaystyle {\frac {d\sigma }{d\Omega }}=\left({\frac {1}{n}}\right){\frac {dN}{d\Omega }}=\left({\frac {\alpha }{4E}}\right)^{2}\csc ^{4}{\frac {\chi }{2}}}

Fundamental forces

These equations need to be refined such that the notation is defined as has been done for the previous sets of equations.

Name Equations
Strong force L Q C D = ψ ¯ i ( i γ μ ( D μ ) i j m δ i j ) ψ j 1 4 G μ ν a G a μ ν = ψ ¯ i ( i γ μ μ m ) ψ i g G μ a ψ ¯ i γ μ T i j a ψ j 1 4 G μ ν a G a μ ν , {\displaystyle {\begin{aligned}{\mathcal {L}}_{\mathrm {QCD} }&={\bar {\psi }}_{i}\left(i\gamma ^{\mu }(D_{\mu })_{ij}-m\,\delta _{ij}\right)\psi _{j}-{\frac {1}{4}}G_{\mu \nu }^{a}G_{a}^{\mu \nu }\\&={\bar {\psi }}_{i}(i\gamma ^{\mu }\partial _{\mu }-m)\psi _{i}-gG_{\mu }^{a}{\bar {\psi }}_{i}\gamma ^{\mu }T_{ij}^{a}\psi _{j}-{\frac {1}{4}}G_{\mu \nu }^{a}G_{a}^{\mu \nu }\,,\\\end{aligned}}\,\!}
Electroweak interaction L E W = L g + L f + L h + L y . {\displaystyle {\mathcal {L}}_{\mathrm {EW} }={\mathcal {L}}_{g}+{\mathcal {L}}_{f}+{\mathcal {L}}_{h}+{\mathcal {L}}_{y}.\,\!}
L g = 1 4 W a μ ν W μ ν a 1 4 B μ ν B μ ν {\displaystyle {\mathcal {L}}_{g}=-{\frac {1}{4}}W_{a}^{\mu \nu }W_{\mu \nu }^{a}-{\frac {1}{4}}B^{\mu \nu }B_{\mu \nu }\,\!}
L f = Q ¯ i i D / Q i + u ¯ i c i D / u i c + d ¯ i c i D / d i c + L ¯ i i D / L i + e ¯ i c i D / e i c {\displaystyle {\mathcal {L}}_{f}={\overline {Q}}_{i}iD\!\!\!\!/\;Q_{i}+{\overline {u}}_{i}^{c}iD\!\!\!\!/\;u_{i}^{c}+{\overline {d}}_{i}^{c}iD\!\!\!\!/\;d_{i}^{c}+{\overline {L}}_{i}iD\!\!\!\!/\;L_{i}+{\overline {e}}_{i}^{c}iD\!\!\!\!/\;e_{i}^{c}\,\!}
L h = | D μ h | 2 λ ( | h | 2 v 2 2 ) 2 {\displaystyle {\mathcal {L}}_{h}=|D_{\mu }h|^{2}-\lambda \left(|h|^{2}-{\frac {v^{2}}{2}}\right)^{2}\,\!}
L y = y u i j ϵ a b h b Q ¯ i a u j c y d i j h Q ¯ i d j c y e i j h L ¯ i e j c + h . c . {\displaystyle {\mathcal {L}}_{y}=-y_{u\,ij}\epsilon ^{ab}\,h_{b}^{\dagger }\,{\overline {Q}}_{ia}u_{j}^{c}-y_{d\,ij}\,h\,{\overline {Q}}_{i}d_{j}^{c}-y_{e\,ij}\,h\,{\overline {L}}_{i}e_{j}^{c}+h.c.\,\!}
Quantum electrodynamics L Q E D = ψ ¯ ( i γ μ D μ m ) ψ 1 4 F μ ν F μ ν , {\displaystyle {\mathcal {L}}_{\mathrm {QED} }={\bar {\psi }}(i\gamma ^{\mu }D_{\mu }-m)\psi -{\frac {1}{4}}F_{\mu \nu }F^{\mu \nu }\;,\,\!}

See also

Footnotes

Sources

Further reading

SI units
Base units
Derived units
with special names
Other accepted units
See also
Categories: