Misplaced Pages

List of formulas in elementary geometry

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is a short list of some common mathematical shapes and figures and the formulas that describe them.

Two-dimensional shapes

Shape Area Perimeter/Circumference Meanings of symbols
Square l 2 {\displaystyle l^{2}} 4 l {\displaystyle 4l} l {\displaystyle l} is the length of a side
Rectangle l b {\displaystyle lb} 2 ( l + b ) {\displaystyle 2(l+b)} l {\displaystyle l} is length, b {\displaystyle b} is breadth
Circle π r 2 {\displaystyle \pi r^{2}} 2 π r {\displaystyle 2\pi r} or π d {\displaystyle \pi d} where r {\displaystyle r} is the radius and d {\displaystyle d} is the diameter
Ellipse π a b {\displaystyle \pi ab} where a {\displaystyle a} is the semimajor axis and b {\displaystyle b} is the semiminor axis
Triangle b h 2 {\displaystyle {\frac {bh}{2}}} a + b + c {\displaystyle a+b+c} b {\displaystyle b} is base; h {\displaystyle h} is height; a , b , c {\displaystyle a,b,c} are sides
Parallelogram b h {\displaystyle bh} 2 ( a + b ) {\displaystyle 2(a+b)} b {\displaystyle b} is base, h {\displaystyle h} is height, a {\displaystyle a} is side
Trapezoid a + b 2 h {\displaystyle {\frac {a+b}{2}}h} a {\displaystyle a} and b {\displaystyle b} are the bases
Sources:

Three-dimensional shapes

Illustration of the shapes' equation termsCubeCuboidPrismParallelepipedPyramidsTetrahedronConeCylinderSphereEllipsoid

This is a list of volume formulas of basic shapes:

  • Cone 1 3 π r 2 h {\textstyle {\frac {1}{3}}\pi r^{2}h} , where r {\textstyle r} is the base's radius
  • Cube a 3 {\textstyle a^{3}} , where a {\textstyle a} is the side's length;
  • Cuboid a b c {\textstyle abc} , where a {\textstyle a} , b {\textstyle b} , and c {\textstyle c} are the sides' length;
  • Cylinder π r 2 h {\textstyle \pi r^{2}h} , where r {\textstyle r} is the base's radius and h {\textstyle h} is the cone's height;
  • Ellipsoid 4 3 π a b c {\textstyle {\frac {4}{3}}\pi abc} , where a {\textstyle a} , b {\textstyle b} , and c {\textstyle c} are the semi-major and semi-minor axes' length;
  • Sphere 4 3 π r 3 {\textstyle {\frac {4}{3}}\pi r^{3}} , where r {\textstyle r} is the radius;
  • Parallelepiped a b c K {\textstyle abc{\sqrt {K}}} , where a {\textstyle a} , b {\textstyle b} , and c {\textstyle c} are the sides' length, K = 1 + 2 cos ( α ) cos ( β ) cos ( γ ) cos 2 ( α ) cos 2 ( β ) cos 2 ( γ ) {\textstyle K=1+2\cos(\alpha )\cos(\beta )\cos(\gamma )-\cos ^{2}(\alpha )-\cos ^{2}(\beta )-\cos ^{2}(\gamma )} , and α {\textstyle \alpha } , β {\textstyle \beta } , and γ {\textstyle \gamma } are angles between the two sides;
  • Prism B h {\textstyle Bh} , where B {\textstyle B} is the base's area and h {\textstyle h} is the prism's height;
  • Pyramid 1 3 B h {\textstyle {\frac {1}{3}}Bh} , where B {\textstyle B} is the base's area and h {\textstyle h} is the pyramid's height;
  • Tetrahedron 2 12 a 3 {\textstyle {{\sqrt {2}} \over 12}a^{3}} , where a {\textstyle a} is the side's length.

Sphere

See also: Volume of an n-ball and n-sphere § Volume and surface area

The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables

Surface area:

S = 4 π r 2 = 1 π C 2 = π ( 6 V ) 2 3 {\displaystyle {\begin{alignedat}{4}S&=4\pi r^{2}\\&={\frac {1}{\pi }}C^{2}\\&={\sqrt{\pi (6V)^{2}}}\\\end{alignedat}}}

Volume:

V = 4 3 π r 3 = 1 6 π 2 C 3 = 1 6 π S 3 / 2 {\displaystyle {\begin{alignedat}{4}V&={\frac {4}{3}}\pi r^{3}\\&={\frac {1}{6\pi ^{2}}}C^{3}\\&={\frac {1}{6{\sqrt {\pi }}}}S^{3/2}\\\end{alignedat}}}

Radius:

r = 1 2 π C = 1 4 π S = 3 4 π V 3 {\displaystyle {\begin{alignedat}{4}r&={\frac {1}{2\pi }}C\\&={\sqrt {{\frac {1}{4\pi }}S}}\\&={\sqrt{{\frac {3}{4\pi }}V}}\\\end{alignedat}}}

Circumference:

C = 2 π r = π S = π 2 6 V 3 {\displaystyle {\begin{alignedat}{4}C&=2\pi r\\&={\sqrt {\pi S}}\\&={\sqrt{\pi ^{2}6V}}\\\end{alignedat}}}

See also

References

  1. "Archived copy" (PDF). Archived from the original (PDF) on 2012-08-13. Retrieved 2011-11-29.{{cite web}}: CS1 maint: archived copy as title (link)
  2. "Area Formulas".
  3. "List of Basic Geometry Formulas". 27 May 2018.
  4. Treese, Steven A. (2018). History and Measurement of the Base and Derived Units. Cham, Switzerland: Springer Science+Business Media. ISBN 978-3-319-77577-7. LCCN 2018940415. OCLC 1036766223.
Categories: