Misplaced Pages

List of quantum-mechanical systems with analytical solutions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from List of quantum mechanical systems with analytical solutions)

Much insight in quantum mechanics can be gained from understanding the closed-form solutions to the time-dependent non-relativistic Schrödinger equation. It takes the form

H ^ ψ ( r , t ) = [ 2 2 m 2 + V ( r ) ] ψ ( r , t ) = i ψ ( r , t ) t , {\displaystyle {\hat {H}}\psi {\left(\mathbf {r} ,t\right)}=\left\psi {\left(\mathbf {r} ,t\right)}=i\hbar {\frac {\partial \psi {\left(\mathbf {r} ,t\right)}}{\partial t}},}

where ψ {\displaystyle \psi } is the wave function of the system, H ^ {\displaystyle {\hat {H}}} is the Hamiltonian operator, and t {\displaystyle t} is time. Stationary states of this equation are found by solving the time-independent Schrödinger equation,

[ 2 2 m 2 + V ( r ) ] ψ ( r ) = E ψ ( r ) , {\displaystyle \left\psi {\left(\mathbf {r} \right)}=E\psi {\left(\mathbf {r} \right)},}

which is an eigenvalue equation. Very often, only numerical solutions to the Schrödinger equation can be found for a given physical system and its associated potential energy. However, there exists a subset of physical systems for which the form of the eigenfunctions and their associated energies, or eigenvalues, can be found. These quantum-mechanical systems with analytical solutions are listed below.

Solvable systems

Solutions

System Hamiltonian Energy Remarks
Two-state quantum system α I + r σ ^ {\displaystyle \alpha I+\mathbf {r} {\hat {\mathbf {\sigma } }}\,} α ± | r | {\displaystyle \alpha \pm |\mathbf {r} |\,}
Free particle 2 2 2 m {\displaystyle -{\frac {\hbar ^{2}\nabla ^{2}}{2m}}\,} 2 k 2 2 m , k R d {\displaystyle {\frac {\hbar ^{2}\mathbf {k} ^{2}}{2m}},\,\,\mathbf {k} \in \mathbb {R} ^{d}} Massive quantum free particle
Delta potential 2 2 m d 2 d x 2 + λ δ ( x ) {\displaystyle -{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}+\lambda \delta (x)} m λ 2 2 2 {\displaystyle -{\frac {m\lambda ^{2}}{2\hbar ^{2}}}} Bound state
Symmetric double-well Dirac delta potential 2 2 m d 2 d x 2 + λ ( δ ( x R 2 ) + δ ( x + R 2 ) ) {\displaystyle -{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}+\lambda \left(\delta \left(x-{\frac {R}{2}}\right)+\delta \left(x+{\frac {R}{2}}\right)\right)} 1 2 R 2 ( λ R + W ( ± λ R e λ R ) ) 2 {\displaystyle -{\frac {1}{2R^{2}}}\left(\lambda R+W\left(\pm \lambda R\,e^{-\lambda R}\right)\right)^{2}} = m = 1 {\displaystyle \hbar =m=1} , W is Lambert W function, for non-symmetric potential see here
Particle in a box 2 2 m d 2 d x 2 + V ( x ) {\displaystyle -{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}+V(x)} V ( x ) = { 0 , 0 < x < L , , otherwise {\displaystyle V(x)={\begin{cases}0,&0<x<L,\\\infty ,&{\text{otherwise}}\end{cases}}} π 2 2 n 2 2 m L 2 , n = 1 , 2 , 3 , {\displaystyle {\frac {\pi ^{2}\hbar ^{2}n^{2}}{2mL^{2}}},\,\,n=1,2,3,\ldots } for higher dimensions see here
Particle in a ring 2 2 m R 2 d 2 d θ 2 {\displaystyle -{\frac {\hbar ^{2}}{2mR^{2}}}{\frac {d^{2}}{d\theta ^{2}}}\,} 2 n 2 2 m R 2 , n = 0 , ± 1 , ± 2 , {\displaystyle {\frac {\hbar ^{2}n^{2}}{2mR^{2}}},\,\,n=0,\pm 1,\pm 2,\ldots }
Quantum harmonic oscillator 2 2 m d 2 d x 2 + m ω 2 x 2 2 {\displaystyle -{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}+{\frac {m\omega ^{2}x^{2}}{2}}\,} ω ( n + 1 2 ) , n = 0 , 1 , 2 , {\displaystyle \hbar \omega \left(n+{\frac {1}{2}}\right),\,\,n=0,1,2,\ldots } for higher dimensions see here
Hydrogen atom 2 2 μ 2 e 2 4 π ε 0 r {\displaystyle -{\frac {\hbar ^{2}}{2\mu }}\nabla ^{2}-{\frac {e^{2}}{4\pi \varepsilon _{0}r}}} ( μ e 4 32 π 2 ϵ 0 2 2 ) 1 n 2 , n = 1 , 2 , 3 , {\displaystyle -\left({\frac {\mu e^{4}}{32\pi ^{2}\epsilon _{0}^{2}\hbar ^{2}}}\right){\frac {1}{n^{2}}},\,\,n=1,2,3,\ldots }
This science-related list is incomplete; you can help by adding missing items. (October 2024)

See also

References

  1. Hodgson, M.J.P. (2021). "Analytic solution to the time-dependent Schrödinger equation for the one-dimensional quantum harmonic oscillator with an applied uniform field". doi:10.13140/RG.2.2.12867.32809. {{cite journal}}: Cite journal requires |journal= (help)
  2. Ishkhanyan, A. M. (2015). "Exact solution of the Schrödinger equation for the inverse square root potential V 0 / x {\displaystyle V_{0}/{\sqrt {x}}} ". Europhysics Letters. 112 (1): 10006. arXiv:1509.00019. doi:10.1209/0295-5075/112/10006. S2CID 119604105.
  3. Ren, S. Y. (2002). "Two Types of Electronic States in One-Dimensional Crystals of Finite Length". Annals of Physics. 301 (1): 22–30. arXiv:cond-mat/0204211. Bibcode:2002AnPhy.301...22R. doi:10.1006/aphy.2002.6298. S2CID 14490431.
  4. Scott, T.C.; Zhang, Wenxing (2015). "Efficient hybrid-symbolic methods for quantum mechanical calculations". Computer Physics Communications. 191: 221–234. Bibcode:2015CoPhC.191..221S. doi:10.1016/j.cpc.2015.02.009.
  5. Sever; Bucurgat; Tezcan; Yesiltas (2007). "Bound state solution of the Schrödinger equation for Mie potential". Journal of Mathematical Chemistry. 43 (2): 749–755. doi:10.1007/s10910-007-9228-8. S2CID 9887899.
  6. Busch, Thomas; Englert, Berthold-Georg; Rzażewski, Kazimierz; Wilkens, Martin (1998). "Two Cold Atoms in a Harmonic Trap". Foundations of Physics. 27 (4): 549–559. Bibcode:1998FoPh...28..549B. doi:10.1023/A:1018705520999. S2CID 117745876.
  7. N. A. Sinitsyn; V. Y. Chernyak (2017). "The Quest for Solvable Multistate Landau-Zener Models". Journal of Physics A: Mathematical and Theoretical. 50 (25): 255203. arXiv:1701.01870. Bibcode:2017JPhA...50y5203S. doi:10.1088/1751-8121/aa6800. S2CID 119626598.

Reading materials

Categories: