In mathematics, Dirichlet integrals play an important role in distribution theory . We can see the Dirichlet integral in terms of distributions.
One of those is the improper integral of the sinc function over the positive real line,
∫
0
∞
sin
x
x
d
x
=
∫
0
∞
sin
2
x
x
2
d
x
=
π
2
.
{\displaystyle \int _{0}^{\infty }{\frac {\sin x}{x}}\,dx=\int _{0}^{\infty }{\frac {\sin ^{2}x}{x^{2}}}\,dx={\frac {\pi }{2}}.}
Lobachevsky's Dirichlet integral formula
Let
f
(
x
)
{\displaystyle f(x)}
be a continuous function satisfying the
π
{\displaystyle \pi }
-periodic assumption
f
(
x
+
π
)
=
f
(
x
)
{\displaystyle f(x+\pi )=f(x)}
, and
f
(
π
−
x
)
=
f
(
x
)
{\displaystyle f(\pi -x)=f(x)}
, for
0
≤
x
<
∞
{\displaystyle 0\leq x<\infty }
. If the integral
∫
0
∞
sin
x
x
f
(
x
)
d
x
{\displaystyle \int _{0}^{\infty }{\frac {\sin x}{x}}f(x)\,dx}
is taken to be an improper Riemann integral , we have Lobachevsky 's Dirichlet integral formula
∫
0
∞
sin
2
x
x
2
f
(
x
)
d
x
=
∫
0
∞
sin
x
x
f
(
x
)
d
x
=
∫
0
π
/
2
f
(
x
)
d
x
{\displaystyle \int _{0}^{\infty }{\frac {\sin ^{2}x}{x^{2}}}f(x)\,dx=\int _{0}^{\infty }{\frac {\sin x}{x}}f(x)\,dx=\int _{0}^{\pi /2}f(x)\,dx}
Moreover, we have the following identity as an extension of the Lobachevsky Dirichlet integral formula
∫
0
∞
sin
4
x
x
4
f
(
x
)
d
x
=
∫
0
π
/
2
f
(
t
)
d
t
−
2
3
∫
0
π
/
2
sin
2
t
f
(
t
)
d
t
.
{\displaystyle \int _{0}^{\infty }{\frac {\sin ^{4}x}{x^{4}}}f(x)\,dx=\int _{0}^{\pi /2}f(t)\,dt-{\frac {2}{3}}\int _{0}^{\pi /2}\sin ^{2}tf(t)\,dt.}
As an application, take
f
(
x
)
=
1
{\displaystyle f(x)=1}
. Then
∫
0
∞
sin
4
x
x
4
d
x
=
π
3
.
{\displaystyle \int _{0}^{\infty }{\frac {\sin ^{4}x}{x^{4}}}\,dx={\frac {\pi }{3}}.}
References
Jolany, Hassan (2018). "An extension of Lobachevsky formula" . Elemente der Mathematik . 73 (3): 89–94. arXiv :1004.2653 . doi :10.4171/EM/358 .
Hardy, G. H. (1909). "The Integral
∫
0
∞
sin
x
x
d
x
=
π
2
,
{\displaystyle \int _{0}^{\infty }{\frac {\sin x}{x}}\,dx={\frac {\pi }{2}},}
". The Mathematical Gazette . 5 (80): 98–103. doi :10.2307/3602798 . JSTOR 3602798 .
Dixon, Alfred Cardew (1912). "Proof That
∫
0
∞
sin
x
x
d
x
=
π
2
,
{\displaystyle \int _{0}^{\infty }{\frac {\sin x}{x}}\,dx={\frac {\pi }{2}},}
". The Mathematical Gazette . 6 (96): 223–224. doi :10.2307/3604314 . JSTOR 3604314 .
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑