Misplaced Pages

Lobachevsky integral formula

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (September 2017) (Learn how and when to remove this message)

In mathematics, Dirichlet integrals play an important role in distribution theory. We can see the Dirichlet integral in terms of distributions.

One of those is the improper integral of the sinc function over the positive real line,

0 sin x x d x = 0 sin 2 x x 2 d x = π 2 . {\displaystyle \int _{0}^{\infty }{\frac {\sin x}{x}}\,dx=\int _{0}^{\infty }{\frac {\sin ^{2}x}{x^{2}}}\,dx={\frac {\pi }{2}}.}

Lobachevsky's Dirichlet integral formula

Let f ( x ) {\displaystyle f(x)} be a continuous function satisfying the π {\displaystyle \pi } -periodic assumption f ( x + π ) = f ( x ) {\displaystyle f(x+\pi )=f(x)} , and f ( π x ) = f ( x ) {\displaystyle f(\pi -x)=f(x)} , for 0 x < {\displaystyle 0\leq x<\infty } . If the integral 0 sin x x f ( x ) d x {\displaystyle \int _{0}^{\infty }{\frac {\sin x}{x}}f(x)\,dx} is taken to be an improper Riemann integral, we have Lobachevsky's Dirichlet integral formula

0 sin 2 x x 2 f ( x ) d x = 0 sin x x f ( x ) d x = 0 π / 2 f ( x ) d x {\displaystyle \int _{0}^{\infty }{\frac {\sin ^{2}x}{x^{2}}}f(x)\,dx=\int _{0}^{\infty }{\frac {\sin x}{x}}f(x)\,dx=\int _{0}^{\pi /2}f(x)\,dx}

Moreover, we have the following identity as an extension of the Lobachevsky Dirichlet integral formula

0 sin 4 x x 4 f ( x ) d x = 0 π / 2 f ( t ) d t 2 3 0 π / 2 sin 2 t f ( t ) d t . {\displaystyle \int _{0}^{\infty }{\frac {\sin ^{4}x}{x^{4}}}f(x)\,dx=\int _{0}^{\pi /2}f(t)\,dt-{\frac {2}{3}}\int _{0}^{\pi /2}\sin ^{2}tf(t)\,dt.}

As an application, take f ( x ) = 1 {\displaystyle f(x)=1} . Then

0 sin 4 x x 4 d x = π 3 . {\displaystyle \int _{0}^{\infty }{\frac {\sin ^{4}x}{x^{4}}}\,dx={\frac {\pi }{3}}.}

References

  1. Jolany, Hassan (2018). "An extension of Lobachevsky formula". Elemente der Mathematik. 73 (3): 89–94. arXiv:1004.2653. doi:10.4171/EM/358.
  • Hardy, G. H. (1909). "The Integral 0 sin x x d x = π 2 , {\displaystyle \int _{0}^{\infty }{\frac {\sin x}{x}}\,dx={\frac {\pi }{2}},} ". The Mathematical Gazette. 5 (80): 98–103. doi:10.2307/3602798. JSTOR 3602798.
  • Dixon, Alfred Cardew (1912). "Proof That 0 sin x x d x = π 2 , {\displaystyle \int _{0}^{\infty }{\frac {\sin x}{x}}\,dx={\frac {\pi }{2}},} ". The Mathematical Gazette. 6 (96): 223–224. doi:10.2307/3604314. JSTOR 3604314.
Categories: