Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
(Redirected from Lobb numbers)
Type of number in combinatorial mathematics
In combinatorial mathematics, the Lobb numberLm,n counts the ways that n + m open parentheses and n − m close parentheses can be arranged to form the start of a valid sequence of balanced parentheses.
Lobb numbers form a natural generalization of the Catalan numbers, which count the complete strings of balanced parentheses of a given length. Thus, the nth Catalan number equals the Lobb number L0,n. They are named after Andrew Lobb, who used them to give a simple inductive proof of the formula for the n Catalan number.
The Lobb numbers are parameterized by two non-negative integersm and n with n ≥ m ≥ 0. The (m, n) Lobb number Lm,n is given in terms of binomial coefficients by the formula
An alternative expression for Lobb number Lm,n is:
The triangle of these numbers starts as (sequence A039599 in the OEIS)
where the diagonal is
and the left column are the Catalan Numbers
As well as counting sequences of parentheses, the Lobb numbers also count the ways in which n + m copies of the value +1 and n − m copies of the value −1 may be arranged into a sequence such that all of the partial sums of the sequence are non-negative.
Ballot counting
The combinatorics of parentheses is replaced with counting ballots in an election with two candidates in Bertrand's ballot theorem, first published by William Allen Whitworth in 1878. The theorem states the probability that winning candidate is ahead in the count, given known final tallies for each candidate.