Misplaced Pages

Locus heterogeneity

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Locus heterogeneity occurs when mutations at multiple genomic loci are capable of producing the same phenotype (ie. a single trait, pattern of traits, or disorder), and each individual mutation is sufficient to cause the specific phenotype independently. Locus heterogeneity should not be confused with allelic heterogeneity, in which a single phenotype can be produced by multiple mutations, all of which are at the same locus on a chromosome. Likewise, it should not be confused with phenotypic heterogeneity, in which different phenotypes arise among organisms with identical genotypes and environmental conditions. Locus heterogeneity and allelic heterogeneity are the two components of genetic heterogeneity.

Locus heterogeneity may have major implications for a number of human diseases. For instance, it has been associated with retinitis pigmentosa, hypertrophic cardiomyopathy, osteogenesis imperfecta, familial hypercholesterolemia, and hearing loss. Heterogenous loci involved in formation of the same phenotype often contribute to similar biological pathways. The role and degree of locus heterogeneity is an important consideration in understanding disease phenotypes and in the development of therapeutic treatment for these diseases.

The detection of causal genes for diseases impacted by locus heterogeneity is difficult with genetic analysis methods such as linkage analysis and genome sequencing. These methods rely on comparison of affected family members, but when different family members have different disease-causing genes, such genes may not be accurately identified. Existing techniques have been modified and new techniques have been developed to overcome these challenges.

Retinitis pigmentosa

Retinitis pigmentosa is a condition that causes damage to the light-sensitive cells of the retina. There have been over 60 genes identified whose mutations independently cause retinitis pigmentosa, and these can be inherited in an autosomal dominant, autosomal recessive, or X-linked pattern. Examples of such genes include the rhodopsin gene (RHO), the gene encoding for retinitis pigmentosa GTPase regulator (RGPR), and the gene encoding retinitis pigmentosa 2 protein (RP2).

See also

References

  1. ^ Keith BP, Robertson DL, Hentges KE (2014-12-09). "Locus heterogeneity disease genes encode proteins with high interconnectivity in the human protein interaction network". Frontiers in Genetics. 5: 434. doi:10.3389/fgene.2014.00434. PMC 4260505. PMID 25538735.
  2. Ackermann M (August 2015). "A functional perspective on phenotypic heterogeneity in microorganisms". Nature Reviews. Microbiology. 13 (8): 497–508. doi:10.1038/nrmicro3491. PMID 26145732. S2CID 29846214.
  3. "NCI Dictionary of Genetics Terms". National Cancer Institute. 2012-07-20. Retrieved 2019-11-27.
  4. Daiger SP, Sullivan LS, Bowne SJ (August 2013). "Genes and mutations causing retinitis pigmentosa". Clinical Genetics. 84 (2): 132–41. doi:10.1111/cge.12203. PMC 3856531. PMID 23701314.
  5. Solomon SD, Jarcho JA, McKenna W, Geisterfer-Lowrance A, Germain R, Salerni R, et al. (September 1990). "Familial hypertrophic cardiomyopathy is a genetically heterogeneous disease". The Journal of Clinical Investigation. 86 (3): 993–9. doi:10.1172/JCI114802. PMC 296820. PMID 1975599.
  6. Van Dijk FS, Sillence DO (June 2014). "Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment". American Journal of Medical Genetics. Part A. 164A (6): 1470–81. doi:10.1002/ajmg.a.36545. PMC 4314691. PMID 24715559.
  7. Goldstein JL, Dana SE, Brunschede GY, Brown MS (March 1975). "Genetic heterogeneity in familial hypercholesterolemia: evidence for two different mutations affecting functions of low-density lipoprotein receptor". Proceedings of the National Academy of Sciences of the United States of America. 72 (3): 1092–6. Bibcode:1975PNAS...72.1092G. doi:10.1073/pnas.72.3.1092. PMC 432472. PMID 236556.
  8. Keats, Bronya J. B.; Berlin, Charles I. (1999-01-01). "Genomics and Hearing Impairment". Genome Research. 9 (1): 7–16. doi:10.1101/gr.9.1.7. ISSN 1088-9051. PMID 9927480.
  9. ^ Rehman AU, Santos-Cortez RL, Drummond MC, Shahzad M, Lee K, Morell RJ, et al. (September 2015). "Challenges and solutions for gene identification in the presence of familial locus heterogeneity". European Journal of Human Genetics. 23 (9): 1207–15. doi:10.1038/ejhg.2014.266. PMC 4538203. PMID 25491636.
  10. Wang D, Huang J (May 2006). "Detecting linkage disequilibrium in the presence of locus heterogeneity". Annals of Human Genetics. 70 (Pt 3): 397–409. doi:10.1111/j.1529-8817.2005.00229.x. PMID 16674561. S2CID 25856694.
  11. Pal DK, Greenberg DA (2002). "Evaluating genetic heterogeneity in complex disorders". Human Heredity. 53 (4): 216–26. doi:10.1159/000066195. PMID 12435885. S2CID 46285173.
  12. Hartong DT, Berson EL, Dryja TP (November 2006). "Retinitis pigmentosa". Lancet. 368 (9549): 1795–809. doi:10.1016/S0140-6736(06)69740-7. PMID 17113430. S2CID 24950783.
  13. "RetNet: Summaries". sph.uth.edu. Retrieved 2019-11-27.
  14. Ferrari S, Di Iorio E, Barbaro V, Ponzin D, Sorrentino FS, Parmeggiani F (June 2011). "Retinitis pigmentosa: genes and disease mechanisms". Current Genomics. 12 (4): 238–49. doi:10.2174/138920211795860107. PMC 3131731. PMID 22131869.
Stub icon

This genetics article is a stub. You can help Misplaced Pages by expanding it.

Categories: