Misplaced Pages

Logarithmic mean

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Logarithmic average) Difference of two numbers divided by the logarithm of their quotient Not to be confused with the log-average formulation of the geometric mean or the mean in the log semiring.
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Logarithmic mean" – news · newspapers · books · scholar · JSTOR (April 2009) (Learn how and when to remove this message)
Three-dimensional plot showing the values of the logarithmic mean.

In mathematics, the logarithmic mean is a function of two non-negative numbers which is equal to their difference divided by the logarithm of their quotient. This calculation is applicable in engineering problems involving heat and mass transfer.

Definition

The logarithmic mean is defined as:

M lm ( x , y ) = lim ( ξ , η ) ( x , y ) η ξ ln ( η ) ln ( ξ ) = { x if  x = y , y x ln y ln x otherwise, {\displaystyle {\begin{aligned}M_{\text{lm}}(x,y)&=\lim _{(\xi ,\eta )\to (x,y)}{\frac {\eta -\xi }{\ln(\eta )-\ln(\xi )}}\\&={\begin{cases}x&{\text{if }}x=y,\\{\dfrac {y-x}{\ln y-\ln x}}&{\text{otherwise,}}\end{cases}}\end{aligned}}}

for the positive numbers x, y.

Inequalities

The logarithmic mean of two numbers is smaller than the arithmetic mean and the generalized mean with exponent greater than 1. However, it is larger than the geometric mean and the harmonic mean, respectively. The inequalities are strict unless both numbers are equal.

2 1 x + 1 y x y x y ln x ln y x + y 2 ( x 2 + y 2 2 ) 1 / 2  for all  x > 0  and  y > 0. {\displaystyle {\frac {2}{\displaystyle {\frac {1}{x}}+{\frac {1}{y}}}}\leq {\sqrt {xy}}\leq {\frac {x-y}{\ln x-\ln y}}\leq {\frac {x+y}{2}}\leq \left({\frac {x^{2}+y^{2}}{2}}\right)^{1/2}\qquad {\text{ for all }}x>0{\text{ and }}y>0.} Toyesh Prakash Sharma generalizes the arithmetic logarithmic geometric mean inequality for any n belongs to the whole number as x y   ( ln x y ) n 1 ( n + ln x y ) x ( ln x ) n y ( ln y ) n ln x ln y x ( ln x ) n 1 ( n + ln x ) + y ( ln y ) n 1 ( n + ln y ) 2 {\displaystyle {\sqrt {xy}}\ \left(\ln {\sqrt {xy}}\right)^{n-1}\left(n+\ln {\sqrt {xy}}\right)\leq {\frac {x(\ln x)^{n}-y(\ln y)^{n}}{\ln x-\ln y}}\leq {\frac {x(\ln x)^{n-1}(n+\ln x)+y(\ln y)^{n-1}(n+\ln y)}{2}}}

Now, for n = 0: x y ( ln x y ) 1 ln x y x y ln x ln y x ( ln x ) 1 ln x + y ( ln y ) 1 ln y 2 x y x y ln x ln y x + y 2 {\displaystyle {\begin{array}{ccccc}{\sqrt {xy}}\left(\ln {\sqrt {xy}}\right)^{-1}\ln {\sqrt {xy}}&\leq &{\dfrac {x-y}{\ln x-\ln y}}&\leq &{\dfrac {x(\ln x)^{-1}\ln x+y(\ln y)^{-1}\ln y}{2}}\\{\sqrt {xy}}&\leq &{\dfrac {x-y}{\ln x-\ln y}}&\leq &{\dfrac {x+y}{2}}\end{array}}}

This is the arithmetic logarithmic geometric mean inequality. Similarly, one can also obtain results by putting different values of n as below

For n = 1: x y ( 1 + ln x y ) x ln x y ln y ln x ln y x ( 1 + ln x ) + y ( 1 + ln y ) 2 {\displaystyle {\sqrt {xy}}\left(1+\ln {\sqrt {xy}}\right)\leq {\frac {x\ln x-y\ln y}{\ln x-\ln y}}\leq {\frac {x(1+\ln x)+y(1+\ln y)}{2}}}

for the proof go through the bibliography.

Derivation

Mean value theorem of differential calculus

From the mean value theorem, there exists a value ξ in the interval between x and y where the derivative f ′ equals the slope of the secant line:

ξ ( x , y ) :   f ( ξ ) = f ( x ) f ( y ) x y {\displaystyle \exists \xi \in (x,y):\ f'(\xi )={\frac {f(x)-f(y)}{x-y}}}

The logarithmic mean is obtained as the value of ξ by substituting ln for f and similarly for its corresponding derivative:

1 ξ = ln x ln y x y {\displaystyle {\frac {1}{\xi }}={\frac {\ln x-\ln y}{x-y}}}

and solving for ξ:

ξ = x y ln x ln y {\displaystyle \xi ={\frac {x-y}{\ln x-\ln y}}}

Integration

The logarithmic mean can also be interpreted as the area under an exponential curve. L ( x , y ) = 0 1 x 1 t y t   d t = 0 1 ( y x ) t x   d t = x 0 1 ( y x ) t d t = x ln y x ( y x ) t | t = 0 1 = x ln y x ( y x 1 ) = y x ln y x = y x ln y ln x {\displaystyle {\begin{aligned}L(x,y)={}&\int _{0}^{1}x^{1-t}y^{t}\ \mathrm {d} t={}\int _{0}^{1}\left({\frac {y}{x}}\right)^{t}x\ \mathrm {d} t={}x\int _{0}^{1}\left({\frac {y}{x}}\right)^{t}\mathrm {d} t\\={}&\left.{\frac {x}{\ln {\frac {y}{x}}}}\left({\frac {y}{x}}\right)^{t}\right|_{t=0}^{1}={}{\frac {x}{\ln {\frac {y}{x}}}}\left({\frac {y}{x}}-1\right)={}{\frac {y-x}{\ln {\frac {y}{x}}}}\\={}&{\frac {y-x}{\ln y-\ln x}}\end{aligned}}}

The area interpretation allows the easy derivation of some basic properties of the logarithmic mean. Since the exponential function is monotonic, the integral over an interval of length 1 is bounded by x and y. The homogeneity of the integral operator is transferred to the mean operator, that is L ( c x , c y ) = c L ( x , y ) {\displaystyle L(cx,cy)=cL(x,y)} .

Two other useful integral representations are 1 L ( x , y ) = 0 1 d t t x + ( 1 t ) y {\displaystyle {1 \over L(x,y)}=\int _{0}^{1}{\operatorname {d} \!t \over tx+(1-t)y}} and 1 L ( x , y ) = 0 d t ( t + x ) ( t + y ) . {\displaystyle {1 \over L(x,y)}=\int _{0}^{\infty }{\operatorname {d} \!t \over (t+x)\,(t+y)}.}

Generalization

Mean value theorem of differential calculus

One can generalize the mean to n + 1 variables by considering the mean value theorem for divided differences for the n-th derivative of the logarithm.

We obtain

L MV ( x 0 , , x n ) = ( 1 ) n + 1 n ln ( [ x 0 , , x n ] ) n {\displaystyle L_{\text{MV}}(x_{0},\,\dots ,\,x_{n})={\sqrt{(-1)^{n+1}n\ln \left(\left\right)}}}

where ln ( [ x 0 , , x n ] ) {\displaystyle \ln \left(\left\right)} denotes a divided difference of the logarithm.

For n = 2 this leads to

L MV ( x , y , z ) = ( x y ) ( y z ) ( z x ) 2 ( ( y z ) ln x + ( z x ) ln y + ( x y ) ln z ) . {\displaystyle L_{\text{MV}}(x,y,z)={\sqrt {\frac {(x-y)(y-z)(z-x)}{2{\bigl (}(y-z)\ln x+(z-x)\ln y+(x-y)\ln z{\bigr )}}}}.}

Integral

The integral interpretation can also be generalized to more variables, but it leads to a different result. Given the simplex S {\textstyle S} with S = { ( α 0 , , α n ) : ( α 0 + + α n = 1 ) ( α 0 0 ) ( α n 0 ) } {\displaystyle S=\{\left(\alpha _{0},\,\dots ,\,\alpha _{n}\right):\left(\alpha _{0}+\dots +\alpha _{n}=1\right)\land \left(\alpha _{0}\geq 0\right)\land \dots \land \left(\alpha _{n}\geq 0\right)\}} and an appropriate measure d α {\textstyle \mathrm {d} \alpha } which assigns the simplex a volume of 1, we obtain

L I ( x 0 , , x n ) = S x 0 α 0 x n α n   d α {\displaystyle L_{\text{I}}\left(x_{0},\,\dots ,\,x_{n}\right)=\int _{S}x_{0}^{\alpha _{0}}\cdot \,\cdots \,\cdot x_{n}^{\alpha _{n}}\ \mathrm {d} \alpha }

This can be simplified using divided differences of the exponential function to

L I ( x 0 , , x n ) = n ! exp [ ln ( x 0 ) , , ln ( x n ) ] {\displaystyle L_{\text{I}}\left(x_{0},\,\dots ,\,x_{n}\right)=n!\exp \left} .

Example n = 2:

L I ( x , y , z ) = 2 x ( ln y ln z ) + y ( ln z ln x ) + z ( ln x ln y ) ( ln x ln y ) ( ln y ln z ) ( ln z ln x ) . {\displaystyle L_{\text{I}}(x,y,z)=-2{\frac {x(\ln y-\ln z)+y(\ln z-\ln x)+z(\ln x-\ln y)}{(\ln x-\ln y)(\ln y-\ln z)(\ln z-\ln x)}}.}

Connection to other means

  • Arithmetic mean: L ( x 2 , y 2 ) L ( x , y ) = x + y 2 {\displaystyle {\frac {L\left(x^{2},y^{2}\right)}{L(x,y)}}={\frac {x+y}{2}}}
  • Geometric mean: L ( x , y ) L ( 1 x , 1 y ) = x y {\displaystyle {\sqrt {\frac {L\left(x,y\right)}{L\left({\frac {1}{x}},{\frac {1}{y}}\right)}}}={\sqrt {xy}}}
  • Harmonic mean: L ( 1 x , 1 y ) L ( 1 x 2 , 1 y 2 ) = 2 1 x + 1 y {\displaystyle {\frac {L\left({\frac {1}{x}},{\frac {1}{y}}\right)}{L\left({\frac {1}{x^{2}}},{\frac {1}{y^{2}}}\right)}}={\frac {2}{{\frac {1}{x}}+{\frac {1}{y}}}}}

See also

References

Citations
  1. B. C. Carlson (1966). "Some inequalities for hypergeometric functions". Proc. Amer. Math. Soc. 17: 32–39. doi:10.1090/s0002-9939-1966-0188497-6.
  2. B. Ostle & H. L. Terwilliger (1957). "A comparison of two means". Proc. Montana Acad. Sci. 17: 69–70.
  3. Tung-Po Lin (1974). "The Power Mean and the Logarithmic Mean". The American Mathematical Monthly. 81 (8): 879–883. doi:10.1080/00029890.1974.11993684.
  4. Frank Burk (1987). "The Geometric, Logarithmic, and Arithmetic Mean Inequality". The American Mathematical Monthly. 94 (6): 527–528. doi:10.2307/2322844. JSTOR 2322844.
Bibliography
Categories: