(Redirected from Lommel–Weber function )
Plot of the Anger function J v(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
In mathematics, the Anger function , introduced by C. T. Anger (1855 ), is a function defined as
J
ν
(
z
)
=
1
π
∫
0
π
cos
(
ν
θ
−
z
sin
θ
)
d
θ
{\displaystyle \mathbf {J} _{\nu }(z)={\frac {1}{\pi }}\int _{0}^{\pi }\cos(\nu \theta -z\sin \theta )\,d\theta }
with complex parameter
ν
{\displaystyle \nu }
and complex variable
z
{\displaystyle {\textit {z}}}
. It is closely related to the Bessel functions .
The Weber function (also known as Lommel –Weber function ), introduced by H. F. Weber (1879 ), is a closely related function defined by
E
ν
(
z
)
=
1
π
∫
0
π
sin
(
ν
θ
−
z
sin
θ
)
d
θ
{\displaystyle \mathbf {E} _{\nu }(z)={\frac {1}{\pi }}\int _{0}^{\pi }\sin(\nu \theta -z\sin \theta )\,d\theta }
and is closely related to Bessel functions of the second kind.
Relation between Weber and Anger functions
The Anger and Weber functions are related by
Plot of the Weber function E v(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
sin
(
π
ν
)
J
ν
(
z
)
=
cos
(
π
ν
)
E
ν
(
z
)
−
E
−
ν
(
z
)
,
−
sin
(
π
ν
)
E
ν
(
z
)
=
cos
(
π
ν
)
J
ν
(
z
)
−
J
−
ν
(
z
)
,
{\displaystyle {\begin{aligned}\sin(\pi \nu )\mathbf {J} _{\nu }(z)&=\cos(\pi \nu )\mathbf {E} _{\nu }(z)-\mathbf {E} _{-\nu }(z),\\-\sin(\pi \nu )\mathbf {E} _{\nu }(z)&=\cos(\pi \nu )\mathbf {J} _{\nu }(z)-\mathbf {J} _{-\nu }(z),\end{aligned}}}
so in particular if ν is not an integer they can be expressed as linear combinations of each other. If ν is an integer then Anger functions J ν are the same as Bessel functions J ν , and Weber functions can be expressed as finite linear combinations of Struve functions .
Power series expansion
The Anger function has the power series expansion
J
ν
(
z
)
=
cos
π
ν
2
∑
k
=
0
∞
(
−
1
)
k
z
2
k
4
k
Γ
(
k
+
ν
2
+
1
)
Γ
(
k
−
ν
2
+
1
)
+
sin
π
ν
2
∑
k
=
0
∞
(
−
1
)
k
z
2
k
+
1
2
2
k
+
1
Γ
(
k
+
ν
2
+
3
2
)
Γ
(
k
−
ν
2
+
3
2
)
.
{\displaystyle \mathbf {J} _{\nu }(z)=\cos {\frac {\pi \nu }{2}}\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k}}{4^{k}\Gamma \left(k+{\frac {\nu }{2}}+1\right)\Gamma \left(k-{\frac {\nu }{2}}+1\right)}}+\sin {\frac {\pi \nu }{2}}\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{2^{2k+1}\Gamma \left(k+{\frac {\nu }{2}}+{\frac {3}{2}}\right)\Gamma \left(k-{\frac {\nu }{2}}+{\frac {3}{2}}\right)}}.}
While the Weber function has the power series expansion
E
ν
(
z
)
=
sin
π
ν
2
∑
k
=
0
∞
(
−
1
)
k
z
2
k
4
k
Γ
(
k
+
ν
2
+
1
)
Γ
(
k
−
ν
2
+
1
)
−
cos
π
ν
2
∑
k
=
0
∞
(
−
1
)
k
z
2
k
+
1
2
2
k
+
1
Γ
(
k
+
ν
2
+
3
2
)
Γ
(
k
−
ν
2
+
3
2
)
.
{\displaystyle \mathbf {E} _{\nu }(z)=\sin {\frac {\pi \nu }{2}}\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k}}{4^{k}\Gamma \left(k+{\frac {\nu }{2}}+1\right)\Gamma \left(k-{\frac {\nu }{2}}+1\right)}}-\cos {\frac {\pi \nu }{2}}\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{2^{2k+1}\Gamma \left(k+{\frac {\nu }{2}}+{\frac {3}{2}}\right)\Gamma \left(k-{\frac {\nu }{2}}+{\frac {3}{2}}\right)}}.}
Differential equations
The Anger and Weber functions are solutions of inhomogeneous forms of Bessel's equation
z
2
y
′
′
+
z
y
′
+
(
z
2
−
ν
2
)
y
=
0.
{\displaystyle z^{2}y^{\prime \prime }+zy^{\prime }+(z^{2}-\nu ^{2})y=0.}
More precisely, the Anger functions satisfy the equation
z
2
y
′
′
+
z
y
′
+
(
z
2
−
ν
2
)
y
=
(
z
−
ν
)
sin
(
π
ν
)
π
,
{\displaystyle z^{2}y^{\prime \prime }+zy^{\prime }+(z^{2}-\nu ^{2})y={\frac {(z-\nu )\sin(\pi \nu )}{\pi }},}
and the Weber functions satisfy the equation
z
2
y
′
′
+
z
y
′
+
(
z
2
−
ν
2
)
y
=
−
z
+
ν
+
(
z
−
ν
)
cos
(
π
ν
)
π
.
{\displaystyle z^{2}y^{\prime \prime }+zy^{\prime }+(z^{2}-\nu ^{2})y=-{\frac {z+\nu +(z-\nu )\cos(\pi \nu )}{\pi }}.}
Recurrence relations
The Anger function satisfies this inhomogeneous form of recurrence relation
z
J
ν
−
1
(
z
)
+
z
J
ν
+
1
(
z
)
=
2
ν
J
ν
(
z
)
−
2
sin
π
ν
π
.
{\displaystyle z\mathbf {J} _{\nu -1}(z)+z\mathbf {J} _{\nu +1}(z)=2\nu \mathbf {J} _{\nu }(z)-{\frac {2\sin \pi \nu }{\pi }}.}
While the Weber function satisfies this inhomogeneous form of recurrence relation
z
E
ν
−
1
(
z
)
+
z
E
ν
+
1
(
z
)
=
2
ν
E
ν
(
z
)
−
2
(
1
−
cos
π
ν
)
π
.
{\displaystyle z\mathbf {E} _{\nu -1}(z)+z\mathbf {E} _{\nu +1}(z)=2\nu \mathbf {E} _{\nu }(z)-{\frac {2(1-\cos \pi \nu )}{\pi }}.}
Delay differential equations
The Anger and Weber functions satisfy these homogeneous forms of delay differential equations
J
ν
−
1
(
z
)
−
J
ν
+
1
(
z
)
=
2
∂
∂
z
J
ν
(
z
)
,
{\displaystyle \mathbf {J} _{\nu -1}(z)-\mathbf {J} _{\nu +1}(z)=2{\dfrac {\partial }{\partial z}}\mathbf {J} _{\nu }(z),}
E
ν
−
1
(
z
)
−
E
ν
+
1
(
z
)
=
2
∂
∂
z
E
ν
(
z
)
.
{\displaystyle \mathbf {E} _{\nu -1}(z)-\mathbf {E} _{\nu +1}(z)=2{\dfrac {\partial }{\partial z}}\mathbf {E} _{\nu }(z).}
The Anger and Weber functions also satisfy these inhomogeneous forms of delay differential equations
z
∂
∂
z
J
ν
(
z
)
±
ν
J
ν
(
z
)
=
±
z
J
ν
∓
1
(
z
)
±
sin
π
ν
π
,
{\displaystyle z{\dfrac {\partial }{\partial z}}\mathbf {J} _{\nu }(z)\pm \nu \mathbf {J} _{\nu }(z)=\pm z\mathbf {J} _{\nu \mp 1}(z)\pm {\frac {\sin \pi \nu }{\pi }},}
z
∂
∂
z
E
ν
(
z
)
±
ν
E
ν
(
z
)
=
±
z
E
ν
∓
1
(
z
)
±
1
−
cos
π
ν
π
.
{\displaystyle z{\dfrac {\partial }{\partial z}}\mathbf {E} _{\nu }(z)\pm \nu \mathbf {E} _{\nu }(z)=\pm z\mathbf {E} _{\nu \mp 1}(z)\pm {\frac {1-\cos \pi \nu }{\pi }}.}
References
Prudnikov, A.P. (2001) , "Anger function" , Encyclopedia of Mathematics , EMS Press
^ Paris, R. B. (2010), "Anger-Weber Functions" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Abramowitz, Milton ; Stegun, Irene Ann , eds. (1983) . "Chapter 12" . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 498. ISBN 978-0-486-61272-0 . LCCN 64-60036 . MR 0167642 . LCCN 65-12253 .
C.T. Anger, Neueste Schr. d. Naturf. d. Ges. i. Danzig, 5 (1855) pp. 1–29
Prudnikov, A.P. (2001) , "Weber function" , Encyclopedia of Mathematics , EMS Press
G.N. Watson , "A treatise on the theory of Bessel functions", 1–2, Cambridge Univ. Press (1952)
H.F. Weber, Zurich Vierteljahresschrift, 24 (1879) pp. 33–76
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑