In category theory, a branch of mathematics, Mac Lane's coherence theorem states, in the words of Saunders Mac Lane, “every diagram commutes”. But regarding a result about certain commutative diagrams, Kelly is states as follows: "no longer be seen as constituting the essence of a coherence theorem". More precisely (cf. #Counter-example), it states every formal diagram commutes, where "formal diagram" is an analog of well-formed formulae and terms in proof theory.
The theorem can be stated as a strictification result; namely, every monoidal category is monoidally equivalent to a strict monoidal category.
Counter-example
It is not reasonable to expect we can show literally every diagram commutes, due to the following example of Isbell.
Let be a skeleton of the category of sets and D a unique countable set in it; note by uniqueness. Let be the projection onto the first factor. For any functions , we have . Now, suppose the natural isomorphisms are the identity; in particular, that is the case for . Then for any , since is the identity and is natural,
- .
Since is an epimorphism, this implies . Similarly, using the projection onto the second factor, we get and so , which is absurd.
Proof
This section needs expansion. You can help by adding to it. (February 2022) |
Coherence condition (Monoidal category)
In monoidal category , the following two conditions are called coherence conditions:
- Let a bifunctor called the tensor product, a natural isomorphism , called the associator:
- Also, let an identity object and has a left identity, a natural isomorphism called the left unitor:
- as well as, let has a right identity, a natural isomorphism called the right unitor:
- .
Pentagon and triangle identity
To satisfy the coherence condition, it is enough to prove just the pentagon and triangle identity, which is essentially the same as what is stated in Kelly's (1964) paper.
See also
Notes
- Mac Lane 1998, Ch VII, § 2.
- Kelly 1974, 1.2
- Schauenburg 2001
- Mac Lane 1998, Ch VII. the end of § 1.
- Kelly 1964
References
- Kelly, G.M (1964). "On MacLane's conditions for coherence of natural associativities, commutativities, etc". Journal of Algebra. 1 (4): 397–402. doi:10.1016/0021-8693(64)90018-3.
- Hasegawa, Masahito (2009). "On traced monoidal closed categories". Mathematical Structures in Computer Science. 19 (2): 217–244. doi:10.1017/S0960129508007184.
- Joyal, A.; Street, R. (1993). "Braided Tensor Categories". Advances in Mathematics. 102 (1): 20–78. doi:10.1006/aima.1993.1055.
- MacLane, Saunders (October 1963). "Natural Associativity and Commutativity". Rice Institute Pamphlet - Rice University Studies. hdl:1911/62865.
- MacLane, Saunders (1965). "Categorical algebra". Bulletin of the American Mathematical Society. 71 (1): 40–106. doi:10.1090/S0002-9904-1965-11234-4.
- Mac Lane, Saunders (1998). Categories for the working mathematician. New York: Springer. ISBN 0-387-98403-8. OCLC 37928530.
- Section 5 of Saunders Mac Lane, Mac Lane, Saunders (1976). "Topology and logic as a source of algebra". Bulletin of the American Mathematical Society. 82 (1): 1–40. doi:10.1090/S0002-9904-1976-13928-6.
- Schauenburg, Peter (2001). "Turning monoidal categories into strict ones". The New York Journal of Mathematics . 7: 257–265. ISSN 1076-9803.
Further reading
- Kelly, G. M. (1974). "Coherence theorems for lax algebras and for distributive laws". Category Seminar. Lecture Notes in Mathematics. Vol. 420. pp. 281–375. doi:10.1007/BFb0063106. ISBN 978-3-540-06966-9.
External links
- Armstrong, John (29 June 2007). "Mac Lane's Coherence Theorem". The Unapologetic Mathematician.
- Etingof, Pavel; Gelaki, Shlomo; Nikshych, Dmitri; Ostrik, Victor. "18.769, Spring 2009, Graduate Topics in Lie Theory: Tensor Categories §.Lecture 3". MIT Open Course Ware.
- "coherence theorem for monoidal categories". ncatlab.org.
- "Mac Lane's proof of the coherence theorem for monoidal categories". ncatlab.org.
- "coherence and strictification". ncatlab.org.
- "coherence and strictification for monoidal categories". ncatlab.org.
- "pentagon identity". ncatlab.org.
This category theory-related article is a stub. You can help Misplaced Pages by expanding it. |