Misplaced Pages

Markovian arrival process

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Markovian arrival processes) This article is about arrival processes to queues. For bivariate processes, see Markov additive process.

In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed.

The processes were first suggested by Marcel F. Neuts in 1979.

Definition

A Markov arrival process is defined by two matrices, D0 and D1 where elements of D0 represent hidden transitions and elements of D1 observable transitions. The block matrix Q below is a transition rate matrix for a continuous-time Markov chain.

Q = [ D 0 D 1 0 0 0 D 0 D 1 0 0 0 D 0 D 1 ] . {\displaystyle Q=\left\;.}

The simplest example is a Poisson process where D0 = −λ and D1 = λ where there is only one possible transition, it is observable, and occurs at rate λ. For Q to be a valid transition rate matrix, the following restrictions apply to the Di

0 [ D 1 ] i , j < 0 [ D 0 ] i , j < i j [ D 0 ] i , i < 0 ( D 0 + D 1 ) 1 = 0 {\displaystyle {\begin{aligned}0\leq _{i,j}&<\infty \\0\leq _{i,j}&<\infty \quad i\neq j\\\,_{i,i}&<0\\(D_{0}+D_{1}){\boldsymbol {1}}&={\boldsymbol {0}}\end{aligned}}}

Special cases

Phase-type renewal process

The phase-type renewal process is a Markov arrival process with phase-type distributed sojourn between arrivals. For example, if an arrival process has an interarrival time distribution PH ( α , S ) {\displaystyle ({\boldsymbol {\alpha }},S)} with an exit vector denoted S 0 = S 1 {\displaystyle {\boldsymbol {S}}^{0}=-S{\boldsymbol {1}}} , the arrival process has generator matrix,

Q = [ S S 0 α 0 0 0 S S 0 α 0 0 0 S S 0 α ] {\displaystyle Q=\left}

Generalizations

Batch Markov arrival process

The batch Markovian arrival process (BMAP) is a generalisation of the Markovian arrival process by allowing more than one arrival at a time. The homogeneous case has rate matrix,

Q = [ D 0 D 1 D 2 D 3 0 D 0 D 1 D 2 0 0 D 0 D 1 ] . {\displaystyle Q=\left\;.}

An arrival of size k {\displaystyle k} occurs every time a transition occurs in the sub-matrix D k {\displaystyle D_{k}} . Sub-matrices D k {\displaystyle D_{k}} have elements of λ i , j {\displaystyle \lambda _{i,j}} , the rate of a Poisson process, such that,

0 [ D k ] i , j < 1 k {\displaystyle 0\leq _{i,j}<\infty \;\;\;\;1\leq k}
0 [ D 0 ] i , j < i j {\displaystyle 0\leq _{i,j}<\infty \;\;\;\;i\neq j}
[ D 0 ] i , i < 0 {\displaystyle _{i,i}<0\;}

and

k = 0 D k 1 = 0 {\displaystyle \sum _{k=0}^{\infty }D_{k}{\boldsymbol {1}}={\boldsymbol {0}}}

Markov-modulated Poisson process

The Markov-modulated Poisson process or MMPP where m Poisson processes are switched between by an underlying continuous-time Markov chain. If each of the m Poisson processes has rate λi and the modulating continuous-time Markov has m × m transition rate matrix R, then the MAP representation is

D 1 = diag { λ 1 , , λ m } D 0 = R D 1 . {\displaystyle {\begin{aligned}D_{1}&=\operatorname {diag} \{\lambda _{1},\dots ,\lambda _{m}\}\\D_{0}&=R-D_{1}.\end{aligned}}}

Fitting

A MAP can be fitted using an expectation–maximization algorithm.

Software

See also

References

  1. Asmussen, S. R. (2003). "Markov Additive Models". Applied Probability and Queues. Stochastic Modelling and Applied Probability. Vol. 51. pp. 302–339. doi:10.1007/0-387-21525-5_11. ISBN 978-0-387-00211-8.
  2. ^ Asmussen, S. (2000). "Matrix-analytic Models and their Analysis". Scandinavian Journal of Statistics. 27 (2): 193–226. doi:10.1111/1467-9469.00186. JSTOR 4616600. S2CID 122810934.
  3. Chakravarthy, S. R. (2011). "Markovian Arrival Processes". Wiley Encyclopedia of Operations Research and Management Science. doi:10.1002/9780470400531.eorms0499. ISBN 9780470400531.
  4. Neuts, Marcel F. (1979). "A Versatile Markovian Point Process". Journal of Applied Probability. 16 (4). Applied Probability Trust: 764–779. doi:10.2307/3213143. JSTOR 3213143. S2CID 123525892.
  5. Casale, G. (2011). "Building accurate workload models using Markovian arrival processes". ACM SIGMETRICS Performance Evaluation Review. 39: 357. doi:10.1145/2007116.2007176.
  6. Lucantoni, D. M. (1993). "The BMAP/G/1 queue: A tutorial". Performance Evaluation of Computer and Communication Systems. Lecture Notes in Computer Science. Vol. 729. pp. 330–358. doi:10.1007/BFb0013859. ISBN 3-540-57297-X. S2CID 35110866.
  7. Singh, Gagandeep; Gupta, U. C.; Chaudhry, M. L. (2016). "Detailed computational analysis of queueing-time distributions of the BMAP/G/1 queue using roots". Journal of Applied Probability. 53 (4): 1078–1097. doi:10.1017/jpr.2016.66. S2CID 27505255.
  8. Fischer, W.; Meier-Hellstern, K. (1993). "The Markov-modulated Poisson process (MMPP) cookbook". Performance Evaluation. 18 (2): 149. doi:10.1016/0166-5316(93)90035-S.
  9. Buchholz, P. (2003). "An EM-Algorithm for MAP Fitting from Real Traffic Data". Computer Performance Evaluation. Modelling Techniques and Tools. Lecture Notes in Computer Science. Vol. 2794. pp. 218–236. doi:10.1007/978-3-540-45232-4_14. ISBN 978-3-540-40814-7.
  10. Casale, G.; Zhang, E. Z.; Smirni, E. (2008). "KPC-Toolbox: Simple Yet Effective Trace Fitting Using Markovian Arrival Processes" (PDF). 2008 Fifth International Conference on Quantitative Evaluation of Systems. p. 83. doi:10.1109/QEST.2008.33. ISBN 978-0-7695-3360-5. S2CID 252444.
Queueing theory
Single queueing nodes
Arrival processes
Queueing networks
Service policies
Key concepts
Limit theorems
Extensions
Information systems
Category
Categories: