Misplaced Pages

Markushevich basis

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In functional analysis, a Markushevich basis (sometimes M-basis) is a biorthogonal system that is both complete and total.

Definition

Let X {\displaystyle X} be Banach space. A biorthogonal system { x α ; f α } x α {\displaystyle \{x_{\alpha };f_{\alpha }\}_{x\in \alpha }} in X {\displaystyle X} is a Markushevich basis if span ¯ { x α } = X {\displaystyle {\overline {\text{span}}}\{x_{\alpha }\}=X} and { f α } x α {\displaystyle \{f_{\alpha }\}_{x\in \alpha }} separates the points of X {\displaystyle X} .

In a separable space, biorthogonality is not a substantial obstruction to a Markushevich basis; any spanning set and separating functionals can be made biorthogonal. But it is an open problem whether every separable Banach space admits a Markushevich basis with x α = f α = 1 {\displaystyle \|x_{\alpha }\|=\|f_{\alpha }\|=1} for all α {\displaystyle \alpha } .

Examples

Every Schauder basis of a Banach space is also a Markushevich basis; the converse is not true in general. An example of a Markushevich basis that is not a Schauder basis is the sequence { e 2 i π n t } n Z ( ordered  n = 0 , ± 1 , ± 2 , ) {\displaystyle \{e^{2i\pi nt}\}_{n\in \mathbb {Z} }\quad \quad \quad ({\text{ordered }}n=0,\pm 1,\pm 2,\dots )} in the subspace C ~ [ 0 , 1 ] {\displaystyle {\tilde {C}}} of continuous functions from [ 0 , 1 ] {\displaystyle } to the complex numbers that have equal values on the boundary, under the supremum norm. The computation of a Fourier coefficient is continuous and the span dense in C ~ [ 0 , 1 ] {\displaystyle {\tilde {C}}} ; thus for any f C ~ [ 0 , 1 ] {\displaystyle f\in {\tilde {C}}} , there exists a sequence | n | < N α N , n e 2 π i n t f . {\displaystyle \sum _{|n|<N}{\alpha _{N,n}e^{2\pi int}}\to f{\text{.}}} But if f = n Z α n e 2 π n i t {\displaystyle f=\sum _{n\in \mathbb {Z} }{\alpha _{n}e^{2\pi nit}}} , then for a fixed n {\displaystyle n} the coefficients { α N , n } N {\displaystyle \{\alpha _{N,n}\}_{N}} must converge, and there are functions for which they do not.

The sequence space l {\displaystyle l^{\infty }} admits no Markushevich basis, because it is both Grothendieck and irreflexive. But any separable space (such as l 1 {\displaystyle l^{1}} ) has dual (resp. l {\displaystyle l^{\infty }} ) complemented in a space admitting a Markushevich basis.

References

  1. Hušek, Miroslav; Mill, J. van (2002). Recent Progress in General Topology II. Elsevier. p. 182. ISBN 9780444509802. Retrieved 28 June 2014.
  2. Bierstedt, K.D.; Bonet, J.; Maestre, M.; J. Schmets (2001-09-20). Recent Progress in Functional Analysis. Elsevier. p. 4. ISBN 9780080515922. Retrieved 28 June 2014.
  3. ^ Fabian, Marián J.; Habala, Petr; Hájek, Petr; Montesinos Santalucía, Vicente; Zizler, Václav (2011). Banach Space Theory: The Basis for Linear and Nonlinear Analysis (PDF). New York: Springer. pp. 216–218. doi:10.1007/978-1-4419-7515-7. ISBN 978-1-4419-7515-7.
  4. Albiac, Fernando; Kalton, Nigel J. (2006). Topics in Banach Space Theory. GTM 233 (2nd ed.). Switzerland: Springer (published 2016). pp. 9–10. doi:10.1007/978-3-319-31557-7. ISBN 978-3-319-31557-7.
Stub icon

This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: