Names | |
---|---|
Preferred IUPAC name O-Methylhydroxylamine | |
Other names Methoxylamine; (Aminooxy)methane | |
Identifiers | |
CAS Number | |
3D model (JSmol) | |
ChEMBL | |
ChemSpider | |
DrugBank | |
ECHA InfoCard | 100.000.600 |
EC Number |
|
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | CH5NO |
Molar mass | 47.057 g·mol |
Appearance | Colorless liquid |
Odor | Ammoniacal |
Melting point | −86.4 °C (−123.5 °F; 186.8 K) |
Boiling point | 48.1 °C (118.6 °F; 321.2 K) |
Solubility in water | Miscible |
Vapor pressure | 297.5 mmHg at 25°C |
Refractive index (nD) | 1.4164 |
Hazards | |
GHS labelling: | |
Pictograms | |
Signal word | Danger |
Hazard statements | H302, H312, H314, H332 |
Precautionary statements | P260, P261, P264, P264+P265, P270, P271, P280, P301+P317, P301+P330+P331, P302+P352, P302+P361+P354, P304+P340, P305+P354+P338, P316, P317, P321, P330, P362+P364, P363, P405, P501 |
NFPA 704 (fire diamond) | 3 1 1 |
Safety data sheet (SDS) | Santa Cruz (HCl) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references |
Methoxyamine is the organic compound with the formula CH3ONH2. Also called O-methylhydroxylamine, it is a colourless volatile liquid that is soluble in polar organic solvent and in water. It is a derivative of hydroxylamine with the hydroxyl hydrogen replaced by a methyl group. Alternatively, it can be viewed as a derivative of methanol with the hydroxyl hydrogen replaced by an amino group. It is an isomer of N-methylhydroxylamine and aminomethanol. It decomposes in an exothermic reaction (-56 kJ/mol) to methane and azanone unless stored as a hydrochloride salt.
Synthesis
Methoxyamine is prepared via O-alkylation of hydroxylamine derivatives. For example, it is obtained by O-methylation of acetone oxime followed by hydrolysis of the O-methylated oxime:
- (CH3)2CNOCH3 + H2O → (CH3)2CO + H2NOCH3
The other broad method involves methanolysis of hydroxylamine sulfonates:
- H2NOSO3 + CH3OH → H2NOCH3 + HSO4
Reactions
Analogous to the behavior of hydroxylamine, methoxyamine condenses with ketones and aldehydes to give imines.
Methoxyamine is used as a synthon for NH2. It undergoes deprotonation by methyl lithium to give CH3ONHLi. This N-lithio derivative is attacked by organolithium compounds to give, after hydrolysis, amines:
- H2NOCH3 + CH3Li → LiHNOCH3 + CH4
- LiHNOCH3 + RLi → RNHLi + LiOCH3
- RNHLi + H2O → RNH2 + LiOH
Uses
Methoxyamine has potential medicinal uses. It covalently binds to apurinic/apyrimidinic (AP) DNA damage sites and inhibits base excision repair (BER), which may result in an increase in DNA strand breaks and apoptosis.This agent may potentiate the anti-tumor activity of alkylating agents.
Examples of drugs incorporating the methoxyamine unit are brasofensine and gemifloxacin.
References
- International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 994. doi:10.1039/9781849733069. ISBN 978-0-85404-182-4.
- ^ Kokko, Bruce J.; Edmondson, Scott D. (14 March 2008). "O -Methylhydroxylamine". Encyclopedia of Reagents for Organic Synthesis: rm192m.pub2. doi:10.1002/047084289X.rm192m.pub2. ISBN 978-0471936237.
- "O-Methylhydroxylamine". pubchem.ncbi.nlm.nih.gov.
- Review: Houben-Weyl, Methoden der organische Chemie, vol 10.1, p 1186. Patent: Klein, Ulrich; Buschmann, Ernst; Keil, Michael; Goetz, Norbert; Hartmann, Horst "Process for preparing O-substituted hydroxylammonium salts." Ger. Offen. to BASF, (1994), DE 4233333 A1 19940407.
- Kokko, Bruce J.; Edmondson, Scott D. (2008). "O-Methylhydroxylamine". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rm192m.pub2. ISBN 978-0471936237.
- NCI