Misplaced Pages

Modulus and characteristic of convexity

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Modulus of convexity)

In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity.

Definitions

The modulus of convexity of a Banach space (X, ||⋅||) is the function δ : → defined by

δ ( ε ) = inf { 1 x + y 2 : x , y S , x y ε } , {\displaystyle \delta (\varepsilon )=\inf \left\{1-\left\|{\frac {x+y}{2}}\right\|\,:\,x,y\in S,\|x-y\|\geq \varepsilon \right\},}

where S denotes the unit sphere of (X, || ||). In the definition of δ(ε), one can as well take the infimum over all vectors x, y in X such that ǁxǁ, ǁyǁ ≤ 1 and ǁxyǁ ≥ ε.

The characteristic of convexity of the space (X, || ||) is the number ε0 defined by

ε 0 = sup { ε : δ ( ε ) = 0 } . {\displaystyle \varepsilon _{0}=\sup\{\varepsilon \,:\,\delta (\varepsilon )=0\}.}

These notions are implicit in the general study of uniform convexity by J. A. Clarkson (Clarkson (1936); this is the same paper containing the statements of Clarkson's inequalities). The term "modulus of convexity" appears to be due to M. M. Day.

Properties

  • The modulus of convexity, δ(ε), is a non-decreasing function of ε, and the quotient δ(ε) / ε is also non-decreasing on (0, 2]. The modulus of convexity need not itself be a convex function of ε. However, the modulus of convexity is equivalent to a convex function in the following sense: there exists a convex function δ1(ε) such that
δ ( ε / 2 ) δ 1 ( ε ) δ ( ε ) , ε [ 0 , 2 ] . {\displaystyle \delta (\varepsilon /2)\leq \delta _{1}(\varepsilon )\leq \delta (\varepsilon ),\quad \varepsilon \in .}
  • The normed space (X, ǁ ⋅ ǁ) is uniformly convex if and only if its characteristic of convexity ε0 is equal to 0, i.e., if and only if δ(ε) > 0 for every ε > 0.
  • The Banach space (X, ǁ ⋅ ǁ) is a strictly convex space (i.e., the boundary of the unit ball B contains no line segments) if and only if δ(2) = 1, i.e., if only antipodal points (of the form x and y = −x) of the unit sphere can have distance equal to 2.
  • When X is uniformly convex, it admits an equivalent norm with power type modulus of convexity. Namely, there exists q ≥ 2 and a constant c > 0 such that
δ ( ε ) c ε q , ε [ 0 , 2 ] . {\displaystyle \delta (\varepsilon )\geq c\,\varepsilon ^{q},\quad \varepsilon \in .}

Modulus of convexity of the L spaces

The modulus of convexity is known for the L spaces. If 1 < p 2 {\displaystyle 1<p\leq 2} , then it satisfies the following implicit equation:

( 1 δ p ( ε ) + ε 2 ) p + ( 1 δ p ( ε ) ε 2 ) p = 2. {\displaystyle \left(1-\delta _{p}(\varepsilon )+{\frac {\varepsilon }{2}}\right)^{p}+\left(1-\delta _{p}(\varepsilon )-{\frac {\varepsilon }{2}}\right)^{p}=2.}

Knowing that δ p ( ε + ) = 0 , {\displaystyle \delta _{p}(\varepsilon +)=0,} one can suppose that δ p ( ε ) = a 0 ε + a 1 ε 2 + {\displaystyle \delta _{p}(\varepsilon )=a_{0}\varepsilon +a_{1}\varepsilon ^{2}+\cdots } . Substituting this into the above, and expanding the left-hand-side as a Taylor series around ε = 0 {\displaystyle \varepsilon =0} , one can calculate the a i {\displaystyle a_{i}} coefficients:

δ p ( ε ) = p 1 8 ε 2 + 1 384 ( 3 10 p + 9 p 2 2 p 3 ) ε 4 + . {\displaystyle \delta _{p}(\varepsilon )={\frac {p-1}{8}}\varepsilon ^{2}+{\frac {1}{384}}(3-10p+9p^{2}-2p^{3})\varepsilon ^{4}+\cdots .}

For 2 < p < {\displaystyle 2<p<\infty } , one has the explicit expression

δ p ( ε ) = 1 ( 1 ( ε 2 ) p ) 1 p . {\displaystyle \delta _{p}(\varepsilon )=1-\left(1-\left({\frac {\varepsilon }{2}}\right)^{p}\right)^{\frac {1}{p}}.}

Therefore, δ p ( ε ) = 1 p 2 p ε p + {\displaystyle \delta _{p}(\varepsilon )={\frac {1}{p2^{p}}}\varepsilon ^{p}+\cdots } .

See also

Notes

  1. p. 60 in Lindenstrauss & Tzafriri (1979).
  2. Day, Mahlon (1944), "Uniform convexity in factor and conjugate spaces", Annals of Mathematics, 2, 45 (2): 375–385, doi:10.2307/1969275, JSTOR 1969275
  3. Lemma 1.e.8, p. 66 in Lindenstrauss & Tzafriri (1979).
  4. see Remarks, p. 67 in Lindenstrauss & Tzafriri (1979).
  5. see Proposition 1.e.6, p. 65 and Lemma 1.e.7, 1.e.8, p. 66 in Lindenstrauss & Tzafriri (1979).
  6. see Pisier, Gilles (1975), "Martingales with values in uniformly convex spaces", Israel Journal of Mathematics, 20 (3–4): 326–350, doi:10.1007/BF02760337, MR 0394135, S2CID 120947324 .
  7. Hanner, Olof (1955), "On the uniform convexity of L p {\displaystyle L^{p}} and p {\displaystyle \ell ^{p}} ", Arkiv för Matematik, 3: 239–244, doi:10.1007/BF02589410

References

  • Beauzamy, Bernard (1985) . Introduction to Banach Spaces and their Geometry (Second revised ed.). North-Holland. ISBN 0-444-86416-4. MR 0889253.
  • Clarkson, James (1936), "Uniformly convex spaces", Transactions of the American Mathematical Society, 40 (3), American Mathematical Society: 396–414, doi:10.2307/1989630, JSTOR 1989630
  • Fuster, Enrique Llorens. Some moduli and constants related to metric fixed point theory. Handbook of metric fixed point theory, 133–175, Kluwer Acad. Publ., Dordrecht, 2001. MR1904276
  • Lindenstrauss, Joram and Benyamini, Yoav. Geometric nonlinear functional analysis Colloquium publications, 48. American Mathematical Society.
  • Lindenstrauss, Joram; Tzafriri, Lior (1979), Classical Banach spaces. II. Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete , vol. 97, Berlin-New York: Springer-Verlag, pp. x+243, ISBN 3-540-08888-1.
  • Vitali D. Milman. Geometric theory of Banach spaces II. Geometry of the unit sphere. Uspechi Mat. Nauk, vol. 26, no. 6, 73–149, 1971; Russian Math. Surveys, v. 26 6, 80–159.
Banach space topics
Types of Banach spaces
Banach spaces are:
Function space Topologies
Linear operators
Operator theory
Theorems
Analysis
Types of sets
Subsets / set operations
Examples
Applications
Functional analysis (topicsglossary)
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Categories: