Misplaced Pages

Steinhaus–Moser notation

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Moser polygon notation) Notation for extremely large numbers

In mathematics, Steinhaus–Moser notation is a notation for expressing certain large numbers. It is an extension (devised by Leo Moser) of Hugo Steinhaus's polygon notation.

Definitions

n in a triangle a number n in a triangle means n.
n in a square a number n in a square is equivalent to "the number n inside n triangles, which are all nested."
n in a pentagon a number n in a pentagon is equivalent to "the number n inside n squares, which are all nested."

etc.: n written in an (m + 1)-sided polygon is equivalent to "the number n inside n nested m-sided polygons". In a series of nested polygons, they are associated inward. The number n inside two triangles is equivalent to n inside one triangle, which is equivalent to n raised to the power of n.

Steinhaus defined only the triangle, the square, and the circle n in a circle, which is equivalent to the pentagon defined above.

Special values

Steinhaus defined:

  • mega is the number equivalent to 2 in a circle: ②
  • megiston is the number equivalent to 10 in a circle: ⑩

Moser's number is the number represented by "2 in a megagon". Megagon is here the name of a polygon with "mega" sides (not to be confused with the polygon with one million sides).

Alternative notations:

  • use the functions square(x) and triangle(x)
  • let M(n, m, p) be the number represented by the number n in m nested p-sided polygons; then the rules are:
    • M ( n , 1 , 3 ) = n n {\displaystyle M(n,1,3)=n^{n}}
    • M ( n , 1 , p + 1 ) = M ( n , n , p ) {\displaystyle M(n,1,p+1)=M(n,n,p)}
    • M ( n , m + 1 , p ) = M ( M ( n , 1 , p ) , m , p ) {\displaystyle M(n,m+1,p)=M(M(n,1,p),m,p)}
  • and
    • mega =  M ( 2 , 1 , 5 ) {\displaystyle M(2,1,5)}
    • megiston =  M ( 10 , 1 , 5 ) {\displaystyle M(10,1,5)}
    • moser =  M ( 2 , 1 , M ( 2 , 1 , 5 ) ) {\displaystyle M(2,1,M(2,1,5))}

Mega

A mega, ②, is already a very large number, since ② = square(square(2)) = square(triangle(triangle(2))) = square(triangle(2)) = square(triangle(4)) = square(4) = square(256) = triangle(triangle(triangle(...triangle(256)...))) = triangle(triangle(triangle(...triangle(256)...))) ~ triangle(triangle(triangle(...triangle(3.2317 × 10)...))) ...

Using the other notation:

mega = M ( 2 , 1 , 5 ) = M ( 256 , 256 , 3 ) {\displaystyle M(2,1,5)=M(256,256,3)}

With the function f ( x ) = x x {\displaystyle f(x)=x^{x}} we have mega = f 256 ( 256 ) = f 258 ( 2 ) {\displaystyle f^{256}(256)=f^{258}(2)} where the superscript denotes a functional power, not a numerical power.

We have (note the convention that powers are evaluated from right to left):

  • M ( 256 , 2 , 3 ) = {\displaystyle M(256,2,3)=} ( 256 256 ) 256 256 = 256 256 257 {\displaystyle (256^{\,\!256})^{256^{256}}=256^{256^{257}}}
  • M ( 256 , 3 , 3 ) = {\displaystyle M(256,3,3)=} ( 256 256 257 ) 256 256 257 = 256 256 257 × 256 256 257 = 256 256 257 + 256 257 {\displaystyle (256^{\,\!256^{257}})^{256^{256^{257}}}=256^{256^{257}\times 256^{256^{257}}}=256^{256^{257+256^{257}}}} 256 256 256 257 {\displaystyle 256^{\,\!256^{256^{257}}}}

Similarly:

  • M ( 256 , 4 , 3 ) {\displaystyle M(256,4,3)\approx } 256 256 256 256 257 {\displaystyle {\,\!256^{256^{256^{256^{257}}}}}}
  • M ( 256 , 5 , 3 ) {\displaystyle M(256,5,3)\approx } 256 256 256 256 256 257 {\displaystyle {\,\!256^{256^{256^{256^{256^{257}}}}}}}
  • M ( 256 , 6 , 3 ) {\displaystyle M(256,6,3)\approx } 256 256 256 256 256 256 257 {\displaystyle {\,\!256^{256^{256^{256^{256^{256^{257}}}}}}}}

etc.

Thus:

  • mega = M ( 256 , 256 , 3 ) ( 256 ) 256 257 {\displaystyle M(256,256,3)\approx (256\uparrow )^{256}257} , where ( 256 ) 256 {\displaystyle (256\uparrow )^{256}} denotes a functional power of the function f ( n ) = 256 n {\displaystyle f(n)=256^{n}} .

Rounding more crudely (replacing the 257 at the end by 256), we get mega ≈ 256 ↑ ↑ 257 {\displaystyle 256\uparrow \uparrow 257} , using Knuth's up-arrow notation.

After the first few steps the value of n n {\displaystyle n^{n}} is each time approximately equal to 256 n {\displaystyle 256^{n}} . In fact, it is even approximately equal to 10 n {\displaystyle 10^{n}} (see also approximate arithmetic for very large numbers). Using base 10 powers we get:

  • M ( 256 , 1 , 3 ) 3.23 × 10 616 {\displaystyle M(256,1,3)\approx 3.23\times 10^{616}}
  • M ( 256 , 2 , 3 ) 10 1.99 × 10 619 {\displaystyle M(256,2,3)\approx 10^{\,\!1.99\times 10^{619}}} ( log 10 616 {\displaystyle \log _{10}616} is added to the 616)
  • M ( 256 , 3 , 3 ) 10 10 1.99 × 10 619 {\displaystyle M(256,3,3)\approx 10^{\,\!10^{1.99\times 10^{619}}}} ( 619 {\displaystyle 619} is added to the 1.99 × 10 619 {\displaystyle 1.99\times 10^{619}} , which is negligible; therefore just a 10 is added at the bottom)
  • M ( 256 , 4 , 3 ) 10 10 10 1.99 × 10 619 {\displaystyle M(256,4,3)\approx 10^{\,\!10^{10^{1.99\times 10^{619}}}}}

...

  • mega = M ( 256 , 256 , 3 ) ( 10 ) 255 1.99 × 10 619 {\displaystyle M(256,256,3)\approx (10\uparrow )^{255}1.99\times 10^{619}} , where ( 10 ) 255 {\displaystyle (10\uparrow )^{255}} denotes a functional power of the function f ( n ) = 10 n {\displaystyle f(n)=10^{n}} . Hence 10 ↑ ↑ 257 < mega < 10 ↑ ↑ 258 {\displaystyle 10\uparrow \uparrow 257<{\text{mega}}<10\uparrow \uparrow 258}

Moser's number

It has been proven that in Conway chained arrow notation,

m o s e r < 3 3 4 2 , {\displaystyle \mathrm {moser} <3\rightarrow 3\rightarrow 4\rightarrow 2,}

and, in Knuth's up-arrow notation,

m o s e r < f 3 ( 4 ) = f ( f ( f ( 4 ) ) ) ,  where  f ( n ) = 3 n 3. {\displaystyle \mathrm {moser} <f^{3}(4)=f(f(f(4))),{\text{ where }}f(n)=3\uparrow ^{n}3.}

Therefore, Moser's number, although incomprehensibly large, is vanishingly small compared to Graham's number:

m o s e r 3 3 64 2 < f 64 ( 4 ) = Graham's number . {\displaystyle \mathrm {moser} \ll 3\rightarrow 3\rightarrow 64\rightarrow 2<f^{64}(4)={\text{Graham's number}}.}

See also

References

  1. Hugo Steinhaus, Mathematical Snapshots, Oxford University Press 1969, ISBN 0195032675, pp. 28-29
  2. Proof that G >> M

External links

Hyperoperations
Primary
Inverse for left argument
Inverse for right argument
Related articles
Large numbers
Examples
in
numerical
order
Expression
methods
Notations
Operators
Related
articles
(alphabetical
order)
Categories: