Misplaced Pages

List of most massive stars

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Most massive stars)

This article is about mass. For radius, see List of largest known stars.

This is a list of the most massive stars that have been discovered, in solar mass units (M).

Uncertainties and caveats

Most of the masses listed below are contested and, being the subject of current research, remain under review and subject to constant revision of their masses and other characteristics. Indeed, many of the masses listed in the table below are inferred from theory, using difficult measurements of the stars' temperatures, composition, and absolute brightnesses. All the masses listed below are uncertain: Both the theory and the measurements are pushing the limits of current knowledge and technology. Both theories and measurements could be incorrect.

Artist's impression of disc of obscuring material around a massive star.

Complications with distance and obscuring clouds

Since massive stars are rare, astronomers must look very far from Earth to find them. All the listed stars are many thousands of light years away, which makes measurements difficult. In addition to being far away, many stars of such extreme mass are surrounded by clouds of outflowing gas created by extremely powerful stellar winds; the surrounding gas interferes with the already difficult-to-obtain measurements of stellar temperatures and brightnesses, which greatly complicates the issue of estimating internal chemical compositions and structures. This obstruction leads to difficulties in determining the parameters needed to calculate the star's mass.

Eta Carinae is the bright spot hidden in the double-lobed dust cloud. It is the most massive star that has a Bayer designation. It was only discovered to be (at least) two stars in the past few decades.

Both the obscuring clouds and the great distances also make it difficult to judge whether the star is just a single supermassive object or, instead, a multiple star system. A number of the "stars" listed below may actually be two or more companions orbiting too closely for our telescopes to distinguish, each star possibly being massive in itself but not necessarily "supermassive" to either be on this list, or near the top of it. And certainly other combinations are possible – for example a supermassive star with one or more smaller companions or more than one giant star – but without being able to clearly see inside the surrounding cloud, it is difficult to know what kind of object is actually generating the bright point of light seen from the Earth.

More globally, statistics on stellar populations seem to indicate that the upper mass limit is in the 100–200 solar mass range, so any mass estimate above this range is suspect.

Rare reliable estimates

Eclipsing binary stars are the only stars whose masses are estimated with some confidence. However note that almost all of the masses listed in the table below were inferred by indirect methods; only a few of the masses in the table were determined using eclipsing systems.

Amongst the most reliable listed masses are those for the eclipsing binaries NGC 3603-A1, WR 21a, and WR 20a. Masses for all three were obtained from orbital measurements. This involves measuring their radial velocities and also their light curves. The radial velocities only yield minimum values for the masses, depending on inclination, but light curves of eclipsing binaries provide the missing information: inclination of the orbit to our line of sight.

Relevance of stellar evolution

Some stars may once have been more massive than they are today. It is likely that many large stars have suffered significant mass loss (perhaps as much as several tens of solar masses). This mass may have been expelled by superwinds: high velocity winds that are driven by the hot photosphere into interstellar space. The process forms an enlarged extended envelope around the star that interacts with the nearby interstellar medium and infuses the adjacent volume of space with elements heavier than hydrogen or helium.

There are also – or rather were – stars that might have appeared on the list but no longer exist as stars, or are supernova impostors; today we see only their debris. The masses of the precursor stars that fueled these destructive events can be estimated from the type of explosion and the energy released, but those masses are not listed here.

This list only concerns "living" stars – those which are still seen by Earth-based observers existing as active stars: Still engaged in interior nuclear fusion that generates heat and light. That is, the light now arriving at the Earth as images of the stars listed still shows them to internally generate new energy as of the time (in the distant past) that light now being received was emitted. The list specifically excludes both white dwarfs – former stars that are now seen to be "dead" but radiating residual heat – and black holes – fragmentary remains of exploded stars which have gravitationally collapsed, even though accretion disks surrounding those black holes might generate heat or light exterior to the star's remains (now inside the black hole), radiated by infalling matter (see § Black holes below).

Mass limits

There are two related theoretical limits on how massive a star can possibly be: The accretion mass limit and the Eddington mass limit.

  • The accretion limit is related to star formation: After about 120 M have accreted in a protostar, the combined mass should have become hot enough for its heat to drive away any further incoming matter. In effect, the protostar reaches a point where it evaporates away material already collected as fast as it collects new material.
  • The Eddington limit is based on light pressure from the core of an already-formed star: As mass increases past ~150 M, the intensity of light radiated from a Population I star's core will become sufficient for the light-pressure pushing outward to exceed the gravitational force pulling inward, and the surface material of the star will be free to float away into space. Since their different compositions make them more transparent, Population II and Population III stars have higher and much higher mass limits, respectively.

Accretion limits

Astronomers have long hypothesized that as a protostar grows to a size beyond 120 M, something drastic must happen. Although the limit can be stretched for very early Population III stars, and although the exact value is uncertain, if any stars still exist above 150–200 M they would challenge current theories of stellar evolution.

Studying the Arches Cluster, which is currently the densest known cluster of stars in our galaxy, astronomers have confirmed that no stars in that cluster exceed about 150 M.

The R136 cluster is an unusually dense collection of young, hot, blue stars.

Rare ultramassive stars that exceed this limit – for example in the R136 star cluster – might be explained by the following proposal: Some of the pairs of massive stars in close orbit in young, unstable multiple-star systems must, on rare occasions, collide and merge when certain unusual circumstances hold that make a collision possible.

Eddington mass limit

Main article: Eddington luminosity

Eddington's limit on stellar mass arises because of light-pressure: For a sufficiently massive star the outward pressure of radiant energy generated by nuclear fusion in the star's core exceeds the inward pull of its own gravity. The lowest mass for which this effect is active is the Eddington limit.

Stars of greater mass have a higher rate of core energy generation, and heavier stars' luminosities increase far out of proportion to the increase in their masses. The Eddington limit is the point beyond which a star ought to push itself apart, or at least shed enough mass to reduce its internal energy generation to a lower, maintainable rate. The actual limit-point mass depends on how opaque the gas in the star is, and metal-rich Population I stars have lower mass limits than metal-poor Population II stars. Before their demise, the hypothetical metal-free Population III stars would have had the highest allowed mass, somewhere around 300 M.

In theory, a more massive star could not hold itself together because of the mass loss resulting from the outflow of stellar material. In practice the theoretical Eddington Limit must be modified for high luminosity stars and the empirical Humphreys–Davidson limit is used instead.

List of the most massive known stars

Legend
Wolf–Rayet star
Luminous blue variable
O-type star
B-type star

The following two lists show a few of the known stars, including the stars in open clusters, OB associations, and H II regions. Despite their high luminosity, many of them are nevertheless too distant to be observed with the naked eye. Stars that are at least sometimes visible to the unaided eye have their apparent magnitude (6.5 or brighter) highlighted in blue.

The first list gives stars that are estimated to be 60 M or larger; the majority of which are shown. The second list includes some notable stars which are below 60 M for the purpose of comparison. The method used to determine each star's mass is included to give an idea of the data's uncertainty; note that the mass of binary stars can be determined far more accurately. The masses listed below are the stars' current (evolved) mass, not their initial (formation) mass.

This list is incomplete; you can help by adding missing items. (January 2016)
Stars with 60 M or greater
Star name Location Mass
(M)
Approx. dist.
(ly)
Spectral type Appt. vis. mag. Eff. temp.
(K)
Mass est.
method
Link Ref.
BAT99-98 Tarantula Nebula 226 165,000 WN6 13.37 45,000 spectroscopy SIMBAD
R136a1 Tarantula Nebula 196+34
−27
163,000 WN5h 12.23 46,000 evolution SIMBAD
Melnick 42 Tarantula Nebula 189 163,000 O2If* 12.78 47,300 spectroscopy SIMBAD
VFTS 1022 Tarantula Nebula 178 164,000 O3.5If*/WN7 13.47 42,200 spectroscopy SIMBAD
Westerhout 51-57 Westerhout 51 160 20,000 O4V 16.66
J band
42,700 evolution
R136a3 Tarantula Nebula 155 163,000 WN5h 12.97 50,000 evolution SIMBAD
VFTS 682 Tarantula Nebula 153 164,000 WN5h 16.08 52,200 spectroscopy SIMBAD
HD 15558 A IC 1805 ≥152±51 24,400 O5.5III(f) 7.87
combined
39,500 binary SIMBAD
R136a2 Tarantula Nebula 151 163,000 WN5h 12.34 50,000 evolution SIMBAD
Westerhout 51-3 Westerhout 51 148+105
−82
20,000 O3-8V 17.79
J band
39,800 evolution SIMBAD
Melnick 34 A Tarantula Nebula 147±22 163,000 WN5h 13.09
combined
53,000 binary SIMBAD
VFTS 482 Tarantula Nebula 145 164,000 O3If*/WN6-A 12.95 42,200 spectroscopy SIMBAD
R136c Tarantula Nebula 142 163,000 WN5h 13.43 51,000 evolution SIMBAD
VFTS 1021 Tarantula Nebula 141 164,000 O4 If+ 13.35 39,800 spectroscopy SIMBAD
LH 10-3209 A NGC 1763 140 160,000 O3III(f*) 11.859
combined
42,500 spectroscopy SIMBAD
Melnick 34 B Tarantula Nebula 136±20 163,000 WN5h 13.09
combined
53,000 binary SIMBAD
Westerhout 51d Westerhout 51 135 20,000 15.11
J band
42,700 evolution
VFTS 545 Tarantula Nebula 133 164,000 O2If*/WN5 13.32 47,300 spectroscopy SIMBAD
HD 97950 B WR 43b in HD 97950 132 24,800 WN6h 11.33 42,000 spectroscopy SIMBAD
HD 269810 NGC 2029 130 163,000 O2III(f*) 12.22 52,500 spectroscopy SIMBAD
R136a7 Tarantula Nebula 127 163,000 O3III(f*) 13.97 54,000 evolution SIMBAD
WR 42e HD 97950 123 25,000 O3If*/WN6 14.53 43,000 Ejection SIMBAD
VFTS 506 Tarantula Nebula 122 164,000 ON2V((n))((f*)) 13.31 47,300 spectroscopy SIMBAD
HD 97950 A1a WR 43a A in HD 97950 120 24,800 WN6h 11.18
combined
42,000 binary SIMBAD
LSS 4067 HM 1 120 11,000 O4.5Ifpe 11.44 40,000 evolution SIMBAD
WR 93 Pismis 24 120 5,900 WC7 10.68 71,000 evolution SIMBAD
Sk -69° 212 NGC 2044 119 160,000 O6If 12.416 45,400 evolution SIMBAD
Sk -69° 249 A NGC 2074 119 160,000 O7If 12.02
combined
38,900 evolution SIMBAD
ST5-31 NGC 2074 119 160,000 O2-3(n)fp 12.273 50,700 evolution SIMBAD
R136a5 Tarantula Nebula 116 157,000 O2I(n)f* 13.71 48,000 evolution SIMBAD
MSP 183 Westerlund 2 115 20,000 O3V(f) 13.878 46,300 spectroscopy SIMBAD
WR 24 Collinder 228 114 14,000 WN6ha-w 6.48 50,100 evolution SIMBAD
HD 97950 C1 WR 43c A in HD 97950 113 24,800 WN6h 11.89
combined
44,000 spectroscopy SIMBAD
Arches-F9 WR 102ae in Arches Cluster 111.3 25,000 WN8-9h 16.1
J band
36,600 spectroscopy SIMBAD
Cygnus OB2 #12 A Cygnus OB2 110 5,200 B3–4 Ia+ 11.702
combined
13,700 spectroscopy SIMBAD
HD 93129 Aa Trumpler 14 110 7,500 O2If 6.9
combined
42,500 trinary SIMBAD
HSH95-36 Tarantula Nebula 110 163,000 O2 If* 14.41 49,500 evolution SIMBAD
R146 Tarantula Nebula 109 164,000 WN4 13.11 63,000 spectroscopy SIMBAD
R136a4 Tarantula Nebula 108 157,000 O3 V((f*))(n) 13.41 50,000 evolution SIMBAD
VFTS 621 Tarantula Nebula 107 164,000 O2V((f*))z 15.39 54,000 spectroscopy SIMBAD
R136a6 Tarantula Nebula 105 157,000 O2I(n)f*p 13.35 52,000 evolution SIMBAD
Westerhout 49-3 Westerhout 49 105 36,200 O3-O7V 16.689
J band
40,700 evolution SIMBAD
WR 21a A Runaway star from Westerlund 2 103.6 26,100 O3/WN5ha 12.661 combined 45,000 binary SIMBAD
R99 N44 103 164,000 Ofpe/WN9 11.52 28,000 spectroscopy SIMBAD
Arches-F6 WR 102ah in Arches Cluster 101 25,000 WN8-9h 15.75
J band
33,900 spectroscopy SIMBAD
Sk -65° 47 NGC 1923 101 160,000 O4If 12.466 47,800 evolution SIMBAD
Arches-F1 WR 102ad in Arches Cluster 100.9 25,000 WN8-9h 16.3
J band
33,200 spectroscopy SIMBAD
HD 37836 Large Magellanic Cloud 100 163,000 B0Iae 10.55 28,200 SIMBAD
Peony Star WR 102ka in Peony Nebula 100 26,000 Ofpe/WN9 12.978
J band
25,100 spectroscopy SIMBAD
VFTS 457 Tarantula Nebula 100 164,000 O3.5If*/WN7 13.74 39,800 spectroscopy SIMBAD
η Carinae A Trumpler 16 100 7,500 LBV 4.3
combined
9,400–35,200 spectroscopy SIMBAD
Mercer 30-1 A WR 46-3 A in Mercer 30 99 40,000 10.33
J band
32,200 evolution SIMBAD
Sk -68° 137 Tarantula Nebula 99 160,000 13.346 50,000 spectroscopy SIMBAD
WR 25 A Trumpler 16 98 6,500 O2.5If* 8.8
combined
50,100 evolution SIMBAD
BI 253 runaway star from Tarantula Nebula 97.6 164,000 O2V 13.76 54,000 spectroscopy SIMBAD
R136a8 Tarantula Nebula 96 157,000 O2–3V 14.42 49,500 evolution SIMBAD
HD 38282 B Tarantula Nebula 95 163,000 11.11
combined
47,000 binary SIMBAD
HM 1-6 HM 1 95 11,000 11.64 44,700 evolution SIMBAD
NGC 3603-42 HD 97950 95 25,000 12.86 50,000 spectroscopy SIMBAD
R139 A Tarantula Nebula 95 163,000 11.94
combined
35,000 binary SIMBAD
BAT99-6 NGC 1747 94 165,000 11.95 56,000 spectroscopy SIMBAD
Sk -66° 172 N64 94 160,000 13.1 46,300 spectroscopy SIMBAD
ST2-22 NGC 2044 94 160,000 14.3 51,300 evolution SIMBAD
VFTS 259 Tarantula Nebula 94 164,000 13.65 37,600 spectroscopy SIMBAD
VFTS 562 Tarantula Nebula 94 164,000 13.66 42,200 spectroscopy SIMBAD
VFTS 512 Tarantula Nebula 93 164,000 14.28 47,300 spectroscopy SIMBAD
HD 97950 A1b WR 43a B in HD 97950 92 24,800 WN6h 11.18
combined
40,000 binary SIMBAD
R136b Tarantula Nebula 92 163,000 13.24 35,500 evolution SIMBAD
VFTS 16 Tarantula Nebula 91.6 164,000 13.55 50,600 spectroscopy SIMBAD
HD 97950 A3 HD 97950 91 24,800 12.95 50,000 spectroscopy SIMBAD
NGC 346-W1 NGC 346 91 200,000 12.57 43,400 evolution SIMBAD
Westerhout 49-2 Westerhout 49 90–240, 250±120 36,200 18.246
J band
35,500 spectroscopy SIMBAD
R127 NGC 2055 90 160,000 10.15 10,000–27,000 evolution SIMBAD
VFTS 333 Tarantula Nebula 90 164,000 12.49 37,600 spectroscopy SIMBAD
VFTS 267 Tarantula Nebula 89 164,000 13.49 44,700 spectroscopy SIMBAD
VFTS 64 Tarantula Nebula 88 164,000 14.621 39,800 spectroscopy SIMBAD
BAT99-80 A NGC 2044 87 165,000 13
combined
45,000 spectroscopy SIMBAD
R140b Tarantula Nebula 87 165,000 12.66 47,000 spectroscopy SIMBAD
VFTS 542 Tarantula Nebula 87 164,000 13.47 44,700 spectroscopy SIMBAD
VFTS 599 Tarantula Nebula 87 164,000 13.8 44,700 spectroscopy SIMBAD
WR 89 HM 1 87 11,000 11.02 39,800 evolution SIMBAD
Arches-F7 WR 102aj in Arches Cluster 86.3 25,000 15.74
J band
32,900 spectroscopy SIMBAD
Sk -69° 104 NGC 1910 86 160,000 12.1 39,900 evolution SIMBAD
VFTS 1017 Tarantula Nebula 86 164,000 14.5 50,100 spectroscopy SIMBAD
LH 10-3061 NGC 1763 85 160,000 13.491 52,000 spectroscopy SIMBAD
Sk 80 NGC 346 85 200,000 12.31 38,900 evolution SIMBAD
VFTS 603 Tarantula Nebula 85 164,000 13.99 42,200 spectroscopy SIMBAD
Sk -70° 91 BSDL 1830 84.09 165,000 12.78 48,900 evolution SIMBAD
R147 Tarantula Nebula 84 164,000 12.993 47,300 spectroscopy SIMBAD
HD 93250 A Trumpler 16 83.3 7,500 7.5
combined
46,000 evolution SIMBAD
Melnick 33Na A Tarantula Nebula 83 163,000 13.79
combined
50,000 evolution SIMBAD
WR 20a A Westerlund 2 82.7 20,000 13.28
combined
43,000 binary SIMBAD
TIC 276934932 A NGC 2048 82 160,000 14.05
combined
45,000 spectroscopy SIMBAD
WR 20a B Westerlund 2 81.9 20,000 13.28
combined
43,000 binary SIMBAD
Trumpler 27-27 Trumpler 27 81 3,900 13.31 37,000 evolution SIMBAD
BAT99-96 Tarantula Nebula 80 165,000 13.76 42,000 spectroscopy SIMBAD
HD 15570 IC 1805 80 7,500 8.11 46,000 spectroscopy SIMBAD
HD 38282 A Tarantula Nebula 80 163,000 11.11
combined
47,000 binary SIMBAD
HSH95-46 Tarantula Nebula 80 163,000 14.56 47,500 evolution SIMBAD
Arches-F15 Arches Cluster 79.7 25,000 16.12
J band
35,600 spectroscopy SIMBAD
BI 237 BSDL 2527 79.66 165,000 13.83 51,300 spectroscopy SIMBAD
VFTS 94 Tarantula Nebula 79 164,000 14.161 42,200 spectroscopy SIMBAD
VFTS 151 Tarantula Nebula 79 164,000 14.13 42,200 spectroscopy SIMBAD
LH 41-32 NGC 1910 78 160,000 13.086 48,200 evolution SIMBAD
Pismis 24-17 Pismis 24 78 5,900 11.84 42,700 spectroscopy SIMBAD
VFTS 404 Tarantula Nebula 78 164,000 14.14 44,700 spectroscopy SIMBAD
Westerhout 51-2 Westerhout 51 77+26
−22
20,000 13.68
J band
42,700 evolution SIMBAD
BAT99-68 BSDL 2505 76 165,000 14.13 45,000 spectroscopy SIMBAD
HD 93632 Collinder 228 76 10,000 8.23 45,400 evolution SIMBAD
NGC 346-W3 NGC 346 76 200,000 12.8 52,500 evolution SIMBAD
VFTS 169 Tarantula Nebula 76 164,000 14.437 47,300 spectroscopy SIMBAD
VFTS 440 Tarantula Nebula 76 164,000 12.046 39,800 spectroscopy SIMBAD
AB1 DEM S10 75 197,000 15.238 79,000 spectroscopy SIMBAD
WR 22 A Bochum 10 75 8,300 6.42
combined
44,700 evolution SIMBAD
Pismis 24-1NE Pismis 24 74 6,500 11 42,500 binary SIMBAD
VFTS 608 Tarantula Nebula 74 164,000 14.22 42,200 spectroscopy SIMBAD
HSH95-31 Tarantula Nebula 73 163,000 14.12 47,500 evolution SIMBAD
Mercer 30-3 Mercer 30 73 40,000 12.62
J band
39,300 evolution SIMBAD
Mercer 30-11 Mercer 30 73 40,000 12.33
J band
36,800 evolution SIMBAD
VFTS 566 Tarantula Nebula 73 164,000 14.05 44,700 spectroscopy SIMBAD
LH 64-16 NGC 2001 72 160,000 13.666 50,900 evolution SIMBAD
NGC 2044-W35 NGC 2044 72 160,000 14.1 48,200 evolution SIMBAD
VFTS 216 Tarantula Nebula 72 164,000 14.389 44,700 spectroscopy SIMBAD
ST2-1 NGC 2044 71 160,000 14.3 44,100 evolution SIMBAD
VFTS 3 Tarantula Nebula 71 164,000 11.56 21,000 spectroscopy SIMBAD
Arches-F12 WR 102af in Arches Cluster 70 25,000 16.4
J band
36,900 spectroscopy SIMBAD
HD 15629 IC 1805 70 7,500 8.42 45,900 spectroscopy SIMBAD
HD 37974 N135 70 163,000 10.99 22,500 spectroscopy SIMBAD
HD 93129 Ab Trumpler 14 70 7,500 7.31
combined
44,000 trinary SIMBAD
M33 X-7 B Triangulum Galaxy 70 2,700,000 18.7 35,000 binary SIMBAD
Sk -69° 194 A NGC 2033 70 160,000 12.131
combined
45,000 evolution SIMBAD
VFTS 125 Tarantula Nebula 69.6 164,000 16.6 55,200 spectroscopy SIMBAD
HD 46150 NGC 2244 69 5,200 6.73 44,000 spectroscopy SIMBAD
HD 229059 Berkeley 87 69 3,000 8.7 26,300 evolution SIMBAD
ST2-3 NGC 2044 of LMC 69 160,000 14.264 44,900 evolution SIMBAD
ST2-32 NGC 2044 69 160,000 13.903 45,400 evolution SIMBAD
W28-23 NGC 2033 69 160,000 13.702 51,300 evolution SIMBAD
HD 93403 A Trumpler 16 68.5 10,400 8.27
combined
39,300 binary SIMBAD
HD 93130 Collinder 228 68 10,000 O7II(f) 8.04 39,900 evolution SIMBAD
HM 1-8 HM 1 68 11,000 12.52 46,100 evolution SIMBAD
HSH95-47 Tarantula Nebula 68 163,000 14.72 43,500 evolution SIMBAD
HSH95-48 Tarantula Nebula 68 163,000 14.75 46,500 evolution SIMBAD
Westerhout 51-61 Westerhout 51 68 20,000 18.16
J band
38,000 evolution SIMBAD
BAT99-93 Tarantula Nebula 67 165,000 13.446 45,000 spectroscopy SIMBAD
Sk -69° 200 NGC 2033 67 160,000 11.18 26,300 evolution SIMBAD
Arches-F18 Arches Cluster 66.9 25,000 16.7
J band
36,900 spectroscopy SIMBAD
Arches-F4 WR 102al in Arches Cluster 66.4 25,000 15.63
J band
36,800 spectroscopy SIMBAD
BAT99-59 A NGC 2020 66 165,000 13.186
combined
71,000 spectroscopy SIMBAD
BAT99-104 Tarantula Nebula 66 165,000 12.5 63,000 spectroscopy SIMBAD
HD 5980 B NGC 346 66 200,000 11.31
combined
45,000 trinary SIMBAD
HD 190429 A near Barnard 146 66 7,800 6.63
combined
46,000 binary SIMBAD
LH 31-1003 NGC 1858 66 160,000 13.186 41,900 evolution SIMBAD
LH 114-7 N70 66 160,000 13.66 50,000 spectroscopy SIMBAD
Pismis 24-1SW Pismis 24 66 6,500 11.1 40,000 binary SIMBAD
BAT99-126 NGC 2081 65 165,000 13.166 71,000 spectroscopy SIMBAD
HSH95-40 Tarantula Nebula 65 163,000 14.56 47,500 evolution SIMBAD
HSH95-58 Tarantula Nebula 65 163,000 14.8 47,500 evolution SIMBAD
HSH95-89 Tarantula Nebula 65 163,000 14.76 44,000 spectroscopy SIMBAD
VFTS 63 Tarantula Nebula 65 164,000 14.4 42,200 spectroscopy SIMBAD
VFTS 145 Tarantula Nebula 65 164,000 14.3 39,800 spectroscopy SIMBAD
VFTS 518 Tarantula Nebula 65 164,000 15.11 44,700 spectroscopy SIMBAD
Westerhout 49-8 Westerhout 49 65 36,200 15.617
J band
40,700 evolution SIMBAD
BD+43° 3654 Runaway star from Cygnus OB2 64.6 5,400 10.06 40,400 evolution SIMBAD
BAT99-129 A DEM L294 64 165,000 14.701
combined
79,000 spectroscopy SIMBAD
HSH95-50 Tarantula Nebula 64 163,000 14.65 47,000 evolution SIMBAD
Sk -69° 25 NGC 1748 64 160,000 11.886 43,600 evolution SIMBAD
Trumpler 27-23 Trumpler 27 64 3,900 10.09 27,500 evolution SIMBAD
Westerhout 49-5 Westerhout 49 64 36,200 15.623
J band
42,700 evolution SIMBAD
HD 46223 NGC 2244 63 5,200 7.28 46,000 spectroscopy SIMBAD
HD 64568 NGC 2467 63 16,000 9.39 54,000 spectroscopy SIMBAD
HD 303308 Trumpler 16 63 9,200 8.17 51,300 evolution SIMBAD
HR 6187 A NGC 6193 63 4,300 5.54
combined
46,500 Septenary SIMBAD
LH 10-3058 NGC 1763 63 160,000 14.089 54,000 spectroscopy SIMBAD
ST5-71 NGC 2074 63 160,000 13.266 45,400 evolution SIMBAD
AB9 DEM S80 62 197,000 15.431 100,000 spectroscopy SIMBAD
Brey 32 B NGC 1966 62 165,000 12.32
combined
43,600 evolution SIMBAD
HD 93160 Trumpler 14 62 8,000 7.6 42,700 evolution SIMBAD
HSH95-35 Tarantula Nebula 62 163,000 14.43 47,500 evolution SIMBAD
LH 41-1017 NGC 1910 62 160,000 12.266 42,700 evolution SIMBAD
Mercer 30-6a A WR 46-4 A in Mercer 30 62 40,000 10.39
J band
29,900 evolution SIMBAD
ST4-18 NGC 2081 62 160,000 13.639 44,800 evolution SIMBAD
VFTS 664 Tarantula Nebula 62 164,000 13.937 39,900 spectroscopy SIMBAD
HD 229196 Cygnus OB9 61.6 5,000 8.59 40,900 evolution SIMBAD
AB8 B NGC 602 61 197,000 O4V 12.83
combined
45,000 binary SIMBAD
BAT99-79 A NGC 2044 61 165,000 13.486
combined
42,000 spectroscopy SIMBAD
HD 5980 A NGC 346 61 200,000 11.31
combined
21,000–53,000 trinary SIMBAD
LH 41-18 NGC 1910 61 160,000 12.586 38,500 evolution SIMBAD
Mercer 30-9 A Mercer 30 61 40,000 12.25
J band
34,500 evolution SIMBAD
ST5-25 NGC 2074 61 160,000 13.551 48,600 evolution SIMBAD
VFTS 422 Tarantula Nebula 61 164,000 15.14 39,800 spectroscopy SIMBAD
WR 102hb Quintuplet cluster 61 26,000 13.9
J band
25,100 evolution SIMBAD
Sk -67° 166 GKK-A144 60.68 160,000 12.22 41,800 spectroscopy SIMBAD
Sk -67° 167 GKK-A144 60.68 160,000 12.586 41,800 spectroscopy SIMBAD
Sk -71° 46 BSDL 2242 60.68 160,000 13.241 41,800 spectroscopy SIMBAD
Brey 10 NGC 1770 60 165,000 12.69 117,000 evolution SIMBAD
Brey 94 A NGC 2081 60 165,000 12.996
combined
83,000 evolution SIMBAD
Brey 95a A NGC 2081 60 165,000 12.2
combined
83,000 evolution SIMBAD
HSH95-55 Tarantula Nebula 60 163,000 14.74 47,500 evolution SIMBAD
Mercer 30-7 A WR 46-5 A in Mercer 30 60 40,000 11.516
J band
41,400 evolution SIMBAD
R134 Tarantula Nebula 60 164,000 12.75 39,800 spectroscopy SIMBAD
R142 Tarantula Nebula 60 164,000 11.82 18,000 spectroscopy SIMBAD
R143 Tarantula Nebula 60 160,000 12.014 18,000–36,000 evolution SIMBAD
Sk -69° 142a NGC 1983 60 160,000 11.093 34,000 evolution SIMBAD
Sk -69° 259 NGC 2081 60 160,000 11.93 23,000 evolution SIMBAD
Var 83 Triangulum Galaxy 60 3,000,000 16.027 18,000–37,000 evolution SIMBAD
VFTS 430 Tarantula Nebula 60 164,000 15.11 24,500 spectroscopy SIMBAD

A few notable large stars with masses less than 60 M are shown in the table below for the purpose of comparison, ending with the Sun, which is very close, but would otherwise be too small to be included in the list. At present, all the listed stars are naked-eye visible and relatively nearby.

Star name Location Mass
(M, Sun = 1)
Approx. dist.
(ly)
Appt. vis. mag. Eff. temp.
(K)
Mass est.
method
Link Ref.
λ Cephei Runaway star from Cepheus OB3 51.4 3,100 5.05 36,000 spectroscopy SIMBAD
τ Canis Majoris Aa NGC 2362 50 5,120 4.89 32,000 evolution SIMBAD
θ Muscae Ab Centaurus OB1 44 7,400 5.53
combined
33,000 evolution SIMBAD
ε Orionis Alnilam in Orion OB1 of Orion complex 40 2,000 1.69 27,500 evolution SIMBAD
θ Orionis A Orion OB1 of Orion complex 39 1,500 5.02 34,900 evolution SIMBAD
α Camelopardalis Runaway star from NGC 1502 37.6 6,000 4.29 29,000 evolution SIMBAD
P Cygni IC 4996 of Cygnus OB1 37 5,100 4.82 18,700 spectroscopy SIMBAD
ζ Scorpii NGC 6231 of Scorpius OB1 36 8,210 4.705 17,200 spectroscopy SIMBAD
ζ Orionis Aa Alnitak in Orion OB1 of Orion complex 33 1,260 2.08 29,500 evolution SIMBAD
θ Orionis C1 Trapezium Cluster of Orion complex 33 1,340 5.13
combined
39,000 evolution SIMBAD
κ Cassiopeiae Cassiopeia OB14 33 4,000 4.16 23,500 evolution SIMBAD
μ Normae NGC 6169 33 3,260 4.91 28,000 spectroscopy SIMBAD
η Carinae B Trumpler 16 of Carina Nebula 30 7,500 4.3
combined
37,200 binary SIMBAD
γ Velorum B Vela OB2 28.5 1,230 1.83
combined
35,000 evolution SIMBAD
Meissa A In Collinder 69 of Orion complex 27.9 1,100 3.54 37,700 spectroscopy SIMBAD
ξ Persei Menkib in California Nebula of Perseus OB2 26.1 1,200 4.04 35,000 evolution SIMBAD
ζ Puppis Naos in Vela R2 of Vela Molecular Ridge 25.3±5.3 1,080 2.25 40,000 empirical SIMBAD
WR 79a NGC 6231 of Scorpius OB1 24.4 5,600 5.77 35,000 spectroscopy SIMBAD
Mintaka Aa1 In Orion OB1 of Orion complex 24 1,200 2.5
combined
29,500 evolution SIMBAD
ι Orionis Aa1 Hatysa in NGC 1980 of Orion complex 23.1 1,340 2.77
combined
32,500 evolution SIMBAD
κ Crucis Jewel Box Cluster of Centaurus OB1 23 7,500 5.98 16,300 evolution SIMBAD
WR 78 NGC 6231 of Scorpius OB1 22 4,100 6.48 50,100 spectroscopy SIMBAD
ο Canis Majoris Field star 21.4 2,800 3.043 15,500 evolution SIMBAD
Rigel A In Orion OB1 of Orion complex 21 860 0.13 12,100 evolution SIMBAD
η Canis Majoris Aludra in Collinder 121 21 2,000 2.45 15,000 evolution SIMBAD
ζ Ophiuchi Upper Scorpius subgroup of Scorpius OB2 20.2 370 2.569 34,000 evolution SIMBAD
υ Orionis Orion OB1 of Orion complex 20 2,900 4.618 33,400 evolution SIMBAD
σ Orionis Aa Orion OB1 of Orion complex 18 1,260 4.07
combined
35,000 spectroscopy SIMBAD
μ Columbae Runaway star from Trapezium Cluster 16 1,300 5.18 33,000 spectroscopy SIMBAD
Saiph In Orion OB1 of Orion complex 15.5 650 2.09 26,500 evolution SIMBAD
σ Cygni Cygnus OB4 15 3,260 4.233 10,800 evolution SIMBAD
θ Carinae A IC 2602 of Scorpius OB2 14.9 460 2.76
combined
31,000 evolution SIMBAD
θ Orionis B Orion OB1 of Orion complex 14.8 1,500 6.38 29,300 spectroscopy SIMBAD
ζ Persei Perseus OB2 14.5 750 2.86 20,800 evolution SIMBAD
σ Orionis B Orion OB1 of Orion complex 14 1,260 4.07
combined
31,000 spectroscopy SIMBAD
β Canis Majoris Mirzam in Local Bubble of Scorpius OB2 13.5 490 1.985 23,200 evolution SIMBAD
ε Persei A α Persei Cluster 13.5 640 2.88
combined
26,500 evolution SIMBAD
ι Orionis Aa2 NGC 1980 of Orion complex 13.1 1,340 2.77
combined
27,000 evolution SIMBAD
δ Scorpii A Dschubba in Upper Scorpius subgroup of Scorpius OB2 13 440 2.307
combined
27,400 evolution SIMBAD
σ Orionis Ab Orion OB1 of Orion complex 13 1,260 4.07
combined
29,000 spectroscopy SIMBAD
θ Muscae Aa WR 48 in Centaurus OB1 11.5 7,400 5.53
combined
83,000 spectroscopy SIMBAD
γ Velorum A WR 11 in Vela OB2 9 1,230 1.83
combined
57,000 spectroscopy SIMBAD
ρ Ophiuchi A ρ Ophiuchi cloud complex of Scorpius OB2 8.7 360 4.63
combined
22,000 evolution SIMBAD
Bellatrix In Bellatrix Cluster of Orion complex 7.7 250 1.64 21,800 evolution SIMBAD
Antares B Loop I Bubble of Scorpius OB2 7.2 550 5.5 18,500 evolution SIMBAD
λ Tauri A Pisces-Eridanus stellar stream 7.18 480 3.47
combined
18,700 evolution SIMBAD
δ Persei α Persei Cluster 7 520 3.01 14,900 evolution SIMBAD
ψ Persei α Persei Cluster 6.2 580 4.31 16,000 evolution SIMBAD
α Pavonis Aa Peacock in Tucana-Horologium association 5.91 180 1.94 17,700 evolution SIMBAD
Alcyone In Pleiades 5.9 440 2.87
combined
12,300 evolution SIMBAD
γ Canis Majoris Muliphein in Collinder 121 5.6 440 4.1 13,600 evolution SIMBAD
ο Velorum IC 2391 of Scorpius OB2 5.5 490 3.6 16,200 evolution SIMBAD
ο Aquarii Pisces-Eridanus stellar stream 4.2 440 4.71 13,500 evolution SIMBAD
ν Fornacis Pisces-Eridanus stellar stream 3.65 370 4.69 13,400 evolution SIMBAD
φ Eridani Tucana-Horologium association 3.55 150 3.55 13,700 evolution SIMBAD
η Chamaeleontis η Chamaeleontis moving group of Scorpius OB2 3.2 310 5.453 12,500 evolution SIMBAD
ε Chamaeleontis ε Chamaeleontis moving group of Scorpius OB2 2.87 360 4.91 10,900 evolution SIMBAD
τ Aquarii Pisces-Eridanus stellar stream 2.68 320 5.66 10,600 evolution SIMBAD
ε Hydri Tucana-Horologium association 2.64 150 4.12 11,000 evolution SIMBAD
β Tucanae Tucana-Horologium association 2.5 140 4.37 10,600 evolution SIMBAD
Sun Solar System 1 0.0000158 −26.744 5,772 standard IAU
  1. For some methods, for any one temperature or brightness, different chemical composition indicates a different estimate for stellar mass.
  2. For a binary star, it is possible to measure the individual masses of the two stars by studying their orbital motions, using Kepler's laws of planetary motion.
  3. The superwinds from massive stars are similar to the superwinds generated by asymptotic giant branch (AGB) stars – red giants – that form planetary nebulae. These stars' later remnants become the (technically non-stellar) white dwarf cores of planetary nebulae.
  4. For examples of stellar debris see hypernovae and supernova remnant.
  5. ^ This is a binary system but the secondary is much less massive than the primary.
  6. This unusual measurement was made by assuming the star was ejected from a three-body encounter in NGC 3603. This assumption also means that the current star is the result of a merger between two original close binary components. The mass is consistent with evolutionary mass for a star with the observed parameters.
  7. ^ Mercer 30 is an open cluster in Dragonfish Nebula.
  8. N64 is an emission nebula in Large Magellanic Cloud.
  9. BSDL 1830 is a star cluster in Large Magellanic Cloud.
  10. BSDL 2527 is a star cluster in Large Magellanic Cloud.
  11. BSDL 2505 is a star cluster in Large Magellanic Cloud.
  12. DEM S10 is a H II region in Small Magellanic Cloud.
  13. Bochum 10 is an open cluster in Carina Nebula.
  14. N135 is an emission nebula in Large Magellanic Cloud.
  15. N70 is an emission nebula in Large Magellanic Cloud.
  16. DEM L294 is a H II region in Large Magellanic Cloud.
  17. DEM S80 is a H II region in Small Magellanic Cloud.
  18. ^ GKK-A144 is a stellar association in Large Magellanic Cloud.
  19. BSDL 2242 is a star cluster in Large Magellanic Cloud.
  20. IC 4996 is an open cluster in Cygnus OB1.
  21. Vela R2 is a OB association in Vela Molecular Ridge.

Black holes

Main articles: Black hole, List of black holes, and List of most massive black holes

Black holes are the end point of the evolution of massive stars. Technically they are not stars, as they no longer generate heat and light via nuclear fusion in their cores. Some black holes may have cosmological origins, and would then never have been stars. This is thought to be especially likely in the cases of the most massive black holes.

See also

Footnotes

  1. A very few low / no metallicity stars (populations II and III) between 140–250 M end their lives by a type II-P supernova explosion, which is powerful enough to blow (almost) all matter away from the vicinity of the star, so that not enough material remains to create either a black hole, or a neutron star, or a white dwarf: There is no central remnant; all that remains is an expanding shell of shocked gas from the SN explosion colliding with previously quiescent material ejected before the core collapse explosion.

References

  1. van Marle, A.J.; Owocki, S.P.; Shaviv, N.J. (March 2008). Continuum-driven winds from super-Eddington stars: A tale of two limits. First Stars III. AIP Conference Proceedings. Vol. 990. Santa Fe, NM. pp. 250–253. arXiv:0708.4207. Bibcode:2008AIPC..990..250V. doi:10.1063/1.2905555. ISSN 0094-243X. S2CID 118364586.
  2. Maeder, A.; Georgy, C.; Meynet, G.; Ekström, S. (March 2012). "On the Eddington limit and Wolf-Rayet stars". Astronomy & Astrophysics. 539: A110. arXiv:1201.5013. Bibcode:2012A&A...539A.110M. doi:10.1051/0004-6361/201118328. ISSN 0004-6361. S2CID 119230088.
  3. Banerjee, Sambaran; Kroupa, Pavel; Oh, Seungkyung (21 October 2012). "The emergence of super-canonical stars in R136-type starburst clusters: Super-canonical stars in R136". Monthly Notices of the Royal Astronomical Society. 426 (2): 1416–1426. arXiv:1208.0826. Bibcode:2012MNRAS.426.1416B. doi:10.1111/j.1365-2966.2012.21672.x. ISSN 0035-8711. S2CID 119202197.
  4. Ulmer, Andrew; Fitzpatrick, Edward L. (September 1998). "Revisiting the modified Eddington limit for massive stars". The Astrophysical Journal. 504 (1): 200–206. arXiv:astro-ph/9708264. Bibcode:1998ApJ...504..200U. doi:10.1086/306048. ISSN 0004-637X. S2CID 14916494.
  5. ^ Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; et al. (May 2014). "The Wolf-Rayet stars in the Large Magellanic Cloud. A comprehensive analysis of the WN class". Astronomy & Astrophysics. 565: A27. arXiv:1401.5474. Bibcode:2014A&A...565A..27H. doi:10.1051/0004-6361/201322696. ISSN 0004-6361. S2CID 55123954.
  6. ^ Doran, E.I.; Crowther, P.A.; de Koter, A.; Evans, C.J.; McEvoy, C.; Walborn, N.R.; et al. (October 2013). "The VLT-FLAMES Tarantula Survey: XI. A census of the hot luminous stars and their feedback in 30 Doradus". Astronomy & Astrophysics. 558: A134. arXiv:1308.3412. Bibcode:2013A&A...558A.134D. doi:10.1051/0004-6361/201321824. ISSN 0004-6361. S2CID 118510909.
  7. ^ Bestenlehner, Joachim M.; Crowther, Paul A.; Caballero-Nieves, Saida M.; Schneider, Fabian R.N.; Simón-Díaz, Sergio; Brands, Sarah A.; de Koter, Alex; Gräfener, Götz; Herrero, Artemio; Langer, Norbert; Lennon, Daniel J. (2020-12-01). "The R136 star cluster dissected with Hubble Space Telescope / STIS - II. Physical properties of the most massive stars in R136". Monthly Notices of the Royal Astronomical Society. 499 (2): 1918–1936. arXiv:2009.05136. Bibcode:2020MNRAS.499.1918B. doi:10.1093/mnras/staa2801. ISSN 0035-8711.
  8. ^ Kalari, Venu M.; Horch, Elliott P.; Salinas, Ricardo; Vink, Jorick S.; Andersen, Morten; Bestenlehner, Joachim M.; Rubio, Monica (2022-07-26). "Resolving the core of R136 in the optical". The Astrophysical Journal. 935 (2): 162. arXiv:2207.13078. Bibcode:2022ApJ...935..162K. doi:10.3847/1538-4357/ac8424. S2CID 251067072.
  9. ^ Bestenlehner, J.M.; Gräfener, G.; Vink, J.S.; Najarro, F.; de Koter, A.; Sana, H.; et al. (October 2014). "The VLT-FLAMES Tarantula Survey: XVII. Physical and wind properties of massive stars at the top of the main sequence". Astronomy & Astrophysics. 570: A38. arXiv:1407.1837. Bibcode:2014A&A...570A..38B. doi:10.1051/0004-6361/201423643. ISSN 0004-6361. S2CID 118606369.
  10. ^ Bik, A.; Henning, Th.; Wu, S.-W.; Zhang, M.; Brandner, W.; Pasquali, A.; Stolte, A. (April 2019). "Near-infrared spectroscopy of the massive stellar population of W51: evidence for multi-seeded star formation". Astronomy & Astrophysics. 624: A63. arXiv:1902.05460. Bibcode:2019A&A...624A..63B. doi:10.1051/0004-6361/201935061. ISSN 0004-6361. S2CID 118711844.
  11. ^ Bagnulo, S.; Wade, G.A.; Nazé, Y.; Grunhut, J.H.; Shultz, M.E.; Asher, D.J.; et al. (March 2020). "A search for strong magnetic fields in massive and very massive stars in the Magellanic Clouds". Astronomy & Astrophysics. 635: A163. arXiv:2002.12061. Bibcode:2020A&A...635A.163B. doi:10.1051/0004-6361/201937098. ISSN 0004-6361. S2CID 211532767.
  12. ^ De Becker, M.; Rauw, G.; Manfroid, J.; Eenens, P. (September 2006). "Early-type stars in the young open cluster IC 1805: II. The probably single stars HD 15570 and HD 15629, and the massive binary/triple system HD 15558". Astronomy & Astrophysics. 456 (3): 1121–1130. arXiv:astro-ph/0606379. Bibcode:2006A&A...456.1121D. doi:10.1051/0004-6361:20065300. ISSN 0004-6361. S2CID 16519684.
  13. ^ Ducati, J.R. (2002). VizieR Online Data Catalog: Catalogue of Stellar Photometry in Johnson's 11-color system (Report). Collection of Electronic Catalogues. Vol. 2237. CDS/ADC. Bibcode:2002yCat.2237....0D. S2CID 118191108.
  14. ^ Tehrani, Katie A.; Crowther, Paul A.; Bestenlehner, Joachim M.; Littlefair, Stuart P.; Pollock, A.M.T.; Parker, Richard J.; Schnurr, Olivier (1 April 2019). "Weighing Melnick 34: the most massive binary system known". Monthly Notices of the Royal Astronomical Society. 484 (2): 2692–2710. arXiv:1901.04769. Bibcode:2019MNRAS.484.2692T. doi:10.1093/mnras/stz147. ISSN 0035-8711. S2CID 119069481.
  15. ^ Schneider, F.R.N.; Sana, H.; Evans, C.J.; Bestenlehner, J.M.; Castro, N.; Fossati, L.; et al. (5 January 2018). "An excess of massive stars in the local 30 Doradus starburst". Science. 359 (6371): 69–71. arXiv:1801.03107. Bibcode:2018Sci...359...69S. doi:10.1126/science.aan0106. ISSN 0036-8075. PMID 29302009. S2CID 206658504.
  16. ^ Walborn, Nolan R.; Howarth, Ian D.; Lennon, Daniel J.; Massey, Philip; Oey, M. S.; Moffat, Anthony F. J.; et al. (May 2002). "A New Spectral Classification System for the Earliest O Stars: Definition of Type O2". The Astronomical Journal. 123 (5): 2754–2771. Bibcode:2002AJ....123.2754W. doi:10.1086/339831. ISSN 0004-6256. S2CID 122127697.
  17. ^ Bonanos, A.Z.; Massa, D.L.; Sewilo, M.; Lennon, D.J.; Panagia, N.; Smith, L.J.; et al. (1 October 2009). "Spitzer SAGE Infrared Photometry of Massive Stars in the Large Magellanic Cloud". The Astronomical Journal. 138 (4): 1003–1021. arXiv:0905.1328. Bibcode:2009AJ....138.1003B. doi:10.1088/0004-6256/138/4/1003. ISSN 0004-6256. S2CID 14056495.
  18. ^ Crowther, Paul A.; Schnurr, Olivier; Hirschi, Raphael; Yusof, Norhasliza; Parker, Richard J.; Goodwin, Simon P.; Kassim, Hasan Abu (21 October 2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M⊙ stellar mass limit". Monthly Notices of the Royal Astronomical Society. 408 (2): 731–751. arXiv:1007.3284. Bibcode:2010MNRAS.408..731C. doi:10.1111/j.1365-2966.2010.17167.x. ISSN 0035-8711. S2CID 53001712.
  19. ^ Melena, Nicholas W.; Massey, Philip; Morrell, Nidia I.; Zangari, Amanda M. (1 March 2008). "The massive star content of NGC 3603". The Astronomical Journal. 135 (3): 878–891. arXiv:0712.2621. Bibcode:2008AJ....135..878M. doi:10.1088/0004-6256/135/3/878. ISSN 0004-6256. S2CID 16765414.
  20. Evans, C.J.; Walborn, N.R.; Crowther, P.A.; Hénault-Brunet, V.; Massa, D.; Taylor, W.D.; et al. (1 June 2010). "A massive runaway star from 30 Doradus". The Astrophysical Journal. 715 (2): L74 – L79. arXiv:1004.5402. Bibcode:2010ApJ...715L..74E. doi:10.1088/2041-8205/715/2/L74. ISSN 2041-8205. S2CID 118498849.
  21. ^ Zacharias, N.; Finch, C.T.; Girard, T.M.; Henden, A.; Bartlett, J.L.; Monet, D.G.; Zacharias, M.I. (July 2012). "VizieR On-Line Data Catalog: UCAC4 Catalogue". VizieR On-Line Data Catalog: I/322A. Originally Published in: 2012yCat.1322....0Z; 2013AJ....145...44Z. 1322. Bibcode:2012yCat.1322....0Z. S2CID 211646126.
  22. ^ Brands, S.; de Koter, A.; Bestenlehner, J.; Crowther, P.; Sundqvist, J.; Puls, J.; et al. (7 April 2022). "The R136 star cluster dissected with Hubble Space Telescope/STIS. III. The most massive stars and their clumped winds". Astronomy & Astrophysics. 663: A36. arXiv:2202.11080. Bibcode:2022A&A...663A..36B. doi:10.1051/0004-6361/202142742. ISSN 0004-6361. S2CID 247025548.
  23. Roman-Lopes, A.; Franco, G.A.P.; Sanmartim, D. (26 May 2016). "SOAR Optical and Near-infrared Spectroscopic Survey of Newly Discovered Massive Stars in the Periphery of Galactic Massive Star Clusters I-NGC 3603". The Astrophysical Journal. 823 (2): 96. arXiv:1604.01096. Bibcode:2016ApJ...823...96R. doi:10.3847/0004-637X/823/2/96. ISSN 1538-4357. S2CID 119204619.
  24. ^ Massey, Philip; DeGioia-Eastwood, Kathleen; Waterhouse, Elizabeth (February 2001). "The progenitor masses of Wolf-Rayet stars and luminous blue variables determined from cluster turnoffs. II. Results from 12 galactic clusters and OB associations". The Astronomical Journal. 121 (2): 1050–1070. arXiv:astro-ph/0010654. Bibcode:2001AJ....121.1050M. doi:10.1086/318769. ISSN 0004-6256. S2CID 53345173.
  25. Vázquez, R.A.; Baume, G. (June 2001). "The open cluster Havlen-Moffat no. 1 revisited". Astronomy & Astrophysics. 371 (3): 908–920. Bibcode:2001A&A...371..908V. doi:10.1051/0004-6361:20010410. ISSN 0004-6361. S2CID 121918776.
  26. ^ Massey, Philip; Waterhouse, Elizabeth; DeGioia-Eastwood, Kathleen (May 2000). "The progenitor masses of Wolf-Rayet stars and luminous blue variables determined from cluster turnoffs. I. Results from 19 OB associations in the Magellanic Clouds". The Astronomical Journal. 119 (5): 2214–2241. arXiv:astro-ph/0002233. Bibcode:2000AJ....119.2214M. doi:10.1086/301345. ISSN 0004-6256. S2CID 16891188.
  27. Fabricius, C.; Høg, E.; Makarov, V.V.; Mason, B.D.; Wycoff, G.L.; Urban, S.E. (March 2002). "The Tycho double star catalogue". Astronomy & Astrophysics. 384 (1): 180–189. Bibcode:2002A&A...384..180F. doi:10.1051/0004-6361:20011822. ISSN 0004-6361. S2CID 56060737.
  28. ^ Zaritsky, Dennis; Harris, Jason; Thompson, Ian B.; Grebel, Eva K. (October 2004). "The Magellanic Clouds Photometric Survey: The Large Magellanic Cloud Stellar Catalog and Extinction Map". The Astronomical Journal. 128 (4): 1606–1614. arXiv:astro-ph/0407006. Bibcode:2004AJ....128.1606Z. doi:10.1086/423910. ISSN 0004-6256. S2CID 119532934.
  29. Drew, J.E.; Herrero, A.; Mohr-Smith, M.; Monguió, M.; Wright, N.J.; Kupfer, T.; Napiwotzki, R. (21 October 2018). "Massive stars in the hinterland of the young cluster, Westerlund 2". Monthly Notices of the Royal Astronomical Society. 480 (2): 2109–2124. arXiv:1807.06486. Bibcode:2018MNRAS.480.2109D. doi:10.1093/mnras/sty1905. ISSN 0035-8711. S2CID 53126230.
  30. Vargas Álvarez, Carlos A.; Kobulnicky, Henry A.; Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A.; Cool, Richard J.; Miller, Brendan P. (25 March 2013). "The distance to the massive galactic cluster Westerlund 2 from a spectroscopic and HST photometric study". The Astronomical Journal. 145 (5): 125. arXiv:1302.0863. Bibcode:2013AJ....145..125V. doi:10.1088/0004-6256/145/5/125. ISSN 0004-6256. S2CID 67769122.
  31. ^ Hamann, W.-R.; Gräfener, G.; Liermann, A.; Hainich, R.; Sander, A.a.C.; Shenar, T.; et al. (1 May 2019). "The galactic WN stars revisited - impact of Gaia distances on fundamental stellar parameters". Astronomy & Astrophysics. 625: A57. arXiv:1904.04687. Bibcode:2019A&A...625A..57H. doi:10.1051/0004-6361/201834850. ISSN 0004-6361. S2CID 104292503.
  32. ^ Samus, N.N.; Kazarovets, E.V.; Durlevich, O.V.; Kireeva, N.N.; Pastukhova, E.N. (January 2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007-2013)". VizieR On-Line Data Catalog: B/GCVS. Originally Published in: 2017ARep...61...80S; 2017AZh....94...87S. 1. Bibcode:2009yCat....102025S. S2CID 208116145.
  33. ^ Gräfener, G.; Vink, J.S.; de Koter, A.; Langer, N. (November 2011). "The Eddington factor as the key to understand the winds of the most massive stars: Evidence for a Γ-dependence of Wolf-Rayet type mass loss". Astronomy & Astrophysics. 535: A56. arXiv:1106.5361. Bibcode:2011A&A...535A..56G. doi:10.1051/0004-6361/201116701. ISSN 0004-6361. S2CID 59396651.
  34. ^ Figer, Donald F.; Najarro, Francisco; Gilmore, Diane; Morris, Mark; Kim, Sungsoo S.; Serabyn, Eugene; et al. (10 December 2002). "Massive Stars in the Arches Cluster". The Astrophysical Journal. 581 (1): 258–275. arXiv:astro-ph/0208145. Bibcode:2002ApJ...581..258F. doi:10.1086/344154. ISSN 0004-637X. S2CID 119002004.
  35. ^ Clark, J. S.; Najarro, F.; Negueruela, I.; Ritchie, B. W.; Urbaneja, M. A.; Howarth, I. D. (May 2012). "On the nature of the galactic early-B hypergiants". Astronomy & Astrophysics. 541: A145. arXiv:1202.3991. Bibcode:2012A&A...541A.145C. doi:10.1051/0004-6361/201117472. ISSN 0004-6361. S2CID 11978733.
  36. Laur, Jaan; Kolka, Indrek; Eenmäe, Tõnis; Tuvikene, Taavi; Leedjärv, Laurits (February 2017). "Variability survey of brightest stars in selected OB associations". Astronomy & Astrophysics. 598: A108. arXiv:1611.02452. Bibcode:2017A&A...598A.108L. doi:10.1051/0004-6361/201629395. ISSN 0004-6361. S2CID 119076598.
  37. ^ Nelan, Edmund P.; Walborn, Nolan R.; Wallace, Debra J.; Moffat, Anthony F.J.; Makidon, Russell B.; Gies, Douglas R.; Panagia, Nino (July 2004). "Resolving OB systems in the Carina nebula with the Hubble Space Telescope Fine Guidance Sensor". The Astronomical Journal. 128 (1): 323–329. Bibcode:2004AJ....128..323N. doi:10.1086/420716. ISSN 0004-6256. S2CID 121115585.
  38. ^ Wu, Shi-Wei; Bik, Arjan; Bestenlehner, Joachim M.; Henning, Thomas; Pasquali, Anna; Brandner, Wolfgang; Stolte, Andrea (May 2016). "The massive stellar population of W49: A spectroscopic survey". Astronomy & Astrophysics. 589: A16. arXiv:1602.05190. Bibcode:2016A&A...589A..16W. doi:10.1051/0004-6361/201527823. ISSN 0004-6361. S2CID 59425112.
  39. ^ Cutri, Roc M.; Skrutskie, Michael F.; van Dyk, Schuyler D.; Beichman, Charles A.; Carpenter, John M.; Chester, Thomas; et al. (2003). VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003) (Report). Collection of Electronic Catalogues. Vol. 2246. CDS/ADC. p. II/246. Bibcode:2003yCat.2246....0C. S2CID 115529446.
  40. Tramper, F.; Sana, H.; Fitzsimons, N.E.; de Koter, A.; Kaper, L.; Mahy, L.; Moffat, A. (11 January 2016). "The mass of the very massive binary WR21a". Monthly Notices of the Royal Astronomical Society. 455 (2): 1275–1281. arXiv:1510.03609. Bibcode:2016MNRAS.455.1275T. doi:10.1093/mnras/stv2373. ISSN 0035-8711. S2CID 44364798.
  41. van Genderen, A. M.; Groot, M.; The, P. S. (1983-01-01). "On the photometric differences between luminous OBA type stars in the LMC with and without P Cygni characteristics". Astronomy and Astrophysics. 117: 53–59. Bibcode:1983A&A...117...53V. ISSN 0004-6361.
  42. Martin, John C.; Humphreys, Roberta M. (2023-11-01). "A Census of the Most Luminous Stars. I. The Upper HR Diagram for the Large Magellanic Cloud". The Astronomical Journal. 166 (5): 214. Bibcode:2023AJ....166..214M. doi:10.3847/1538-3881/ad011e. ISSN 0004-6256.
  43. Oskinova, L. M.; Steinke, M.; Hamann, W.-R.; Sander, A.; Todt, H.; Liermann, A. (21 December 2013). "One of the most massive stars in the Galaxy may have formed in isolation". Monthly Notices of the Royal Astronomical Society. 436 (4): 3357–3365. arXiv:1309.7651. Bibcode:2013MNRAS.436.3357O. doi:10.1093/mnras/stt1817. ISSN 0035-8711. S2CID 118513968.
  44. Clementel, N.; Madura, T.I.; Kruip, C.J.H.; Paardekooper, J.-P.; Gull, T.R. (1 March 2015). "3D radiative transfer simulations of Eta Carinae's inner colliding winds - I. Ionization structure of helium at apastron". Monthly Notices of the Royal Astronomical Society. 447 (3): 2445–2458. arXiv:1412.7569. Bibcode:2015MNRAS.447.2445C. doi:10.1093/mnras/stu2614. ISSN 0035-8711. S2CID 118405692.
  45. ^ Hamaguchi, Kenji; Corcoran, Michael F.; Pittard, Julian M.; Sharma, Neetika; Takahashi, Hiromitsu; Russell, Christopher M.P.; et al. (September 2018). "Non-thermal X-rays from colliding wind shock acceleration in the massive binary Eta Carinae". Nature Astronomy. 2 (9): 731–736. arXiv:1904.09219. Bibcode:2018NatAs...2..731H. doi:10.1038/s41550-018-0505-1. ISSN 2397-3366. S2CID 126188024.
  46. ^ de la Fuente, D.; Najarro, F.; Borissova, J.; Ramírez Alegría, S.; Hanson, M.M.; Trombley, C.; et al. (May 2016). "Probing the Dragonfish star-forming complex: The ionizing population of the young massive cluster Mercer 30". Astronomy & Astrophysics. 589: A69. arXiv:1602.02503. Bibcode:2016A&A...589A..69D. doi:10.1051/0004-6361/201528004. ISSN 0004-6361. S2CID 119096455.
  47. Rivero González, J.G.; Puls, J.; Najarro, F.; Brott, I. (January 2012). "Nitrogen line spectroscopy of O-stars: II. Surface nitrogen abundances for O-stars in the Large Magellanic Cloud". Astronomy & Astrophysics. 537: A79. arXiv:1110.5148. Bibcode:2012A&A...537A..79R. doi:10.1051/0004-6361/201117790. ISSN 0004-6361. S2CID 119110554.
  48. ^ Crowther, P.A.; Caballero-Nieves, S.M.; Bostroem, K.A.; Maíz Apellániz, J.; Schneider, F.R.N.; Walborn, N.R.; et al. (2016). "The R136 star cluster dissected with Hubble Space Telescope / STIS. I. Far-ultraviolet spectroscopic census and the origin of He II λ 1640 in young star clusters". Monthly Notices of the Royal Astronomical Society. 458 (1): 624–659. arXiv:1603.04994. Bibcode:2016MNRAS.458..624C. doi:10.1093/mnras/stw273.
  49. ^ Sana, H.; van Boeckel, T.; Tramper, F.; Ellerbroek, L. E.; de Koter, A.; Kaper, L.; et al. (15 March 2013). "R144 revealed as a double-lined spectroscopic binary". Monthly Notices of the Royal Astronomical Society: Letters. 432 (1): L26 – L30. arXiv:1304.4591. Bibcode:2013MNRAS.432L..26S. doi:10.1093/mnrasl/slt029. ISSN 1745-3933. S2CID 119238483.
  50. ^ Reed, B. Cameron (May 2003). "Catalog of Galactic OB Stars". The Astronomical Journal. 125 (5): 2531–2533. Bibcode:2003AJ....125.2531R. doi:10.1086/374771. ISSN 0004-6256. S2CID 121285799.
  51. ^ Schild, H.; Testor, G. (March 1992). "Spectral types and UBV magnitudes of stars in the 30 Doradus complex". Astronomy and Astrophysics Supplement Series. 92: 729–748. Bibcode:1992A&AS...92..729S. ISSN 0365-0138. S2CID 115371295.
  52. Crowther, P.A.; Schnurr, O.; Hirschi, R.; Yusof, N.; Parker, R.J.; Goodwin, S.P.; Kassim, H.A. (2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M stellar mass limit". Monthly Notices of the Royal Astronomical Society. 408 (2): 731–751. arXiv:1007.3284. Bibcode:2010MNRAS.408..731C. doi:10.1111/j.1365-2966.2010.17167.x. S2CID 53001712.
  53. ^ Bonanos, A.Z.; Lennon, D.J.; Köhlinger, F.; van Loon, J.Th.; Massa, D. L.; Sewilo, M.; et al. (1 August 2010). "Spitzer SAGE-SMC infrared photometry of massive stars in the Small Magellanic Cloud". The Astronomical Journal. 140 (2): 416–429. arXiv:1004.0949. Bibcode:2010AJ....140..416B. doi:10.1088/0004-6256/140/2/416. hdl:1887/61635. ISSN 0004-6256. S2CID 119290443.
  54. ^ Smith, Nathan; Tombleson, Ryan (11 February 2015). "Luminous blue variables are antisocial: their isolation implies that they are kicked mass gainers in binary evolution". Monthly Notices of the Royal Astronomical Society. 447 (1): 598–617. arXiv:1406.7431. Bibcode:2015MNRAS.447..598S. doi:10.1093/mnras/stu2430. ISSN 1365-2966. S2CID 119284620.
  55. Evans, C.J.; Lennon, D.J.; Smartt, S. J.; Trundle, C. (September 2006). "The VLT-FLAMES survey of massive stars: observations centered on the Magellanic Cloud clusters NGC 330, NGC 346, NGC 2004, and the N11 region". Astronomy & Astrophysics. 456 (2): 623–638. arXiv:astro-ph/0606405. Bibcode:2006A&A...456..623E. doi:10.1051/0004-6361:20064988. ISSN 0004-6361. S2CID 13160849.
  56. ^ Massa, D.; Fullerton, A. W.; Prinja, R. K. (September 2017). "Mass-loss rates from mid-infrared excesses in LMC and SMC O stars". Monthly Notices of the Royal Astronomical Society. 470 (3): 3765–3774. arXiv:1706.02627. Bibcode:2017MNRAS.470.3765M. doi:10.1093/mnras/stx1443. ISSN 0035-8711. S2CID 119475951.
  57. ^ Ulaczyk, K.; Szymański, M.K.; Udalski, A.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; et al. (1 June 2013). "Variable Stars from the OGLE-III Shallow Survey in the Large Magellanic Cloud". Acta Astronomica. 63 (2): 159–179. arXiv:1306.4802. Bibcode:2013AcA....63..159U. ISSN 0001-5237. S2CID 119228254.
  58. Weidner, C.; Vink, J.S. (December 2010). "The masses, and the mass discrepancy of O-type stars". Astronomy & Astrophysics. 524: A98. arXiv:1010.2204. Bibcode:2010A&A...524A..98W. doi:10.1051/0004-6361/201014491. ISSN 0004-6361. S2CID 118836634.
  59. Bestenlehner, Joachim M.; Crowther, Paul A.; Broos, Patrick S.; Pollock, Andrew M.T.; Townsley, Leisa K. (2022). "Melnick 33Na: A very massive colliding-wind binary system in 30 Doradus". Monthly Notices of the Royal Astronomical Society. 510 (4): 6133–6149. arXiv:2112.00022. Bibcode:2022MNRAS.510.6133B. doi:10.1093/mnras/stab3521.
  60. Castro, N.; Crowther, P.A.; Evans, C.J.; Mackey, J.; Castro-Rodriguez, N.; Vink, J.S.; et al. (2018). "Mapping the core of the Tarantula Nebula with VLT-MUSE. I. Spectral and nebular content around R136". Astronomy & Astrophysics. 614: 12. arXiv:1802.01597. Bibcode:2018A&A...614A.147C. doi:10.1051/0004-6361/201732084. S2CID 119341920. A147.
  61. ^ Rauw, G.; Crowther, P.A.; de Becker, M.; Gosset, E.; Nazé, Y.; Sana, H.; et al. (March 2005). "The spectrum of the very massive binary system WR 20a (WN6ha + WN6ha): Fundamental parameters and wind interactions". Astronomy & Astrophysics. 432 (3): 985–998. Bibcode:2005A&A...432..985R. doi:10.1051/0004-6361:20042136. ISSN 0004-6361. S2CID 53372849.
  62. ^ Fang, M.; van Boekel, R.; King, R. R.; Henning, Th.; Bouwman, J.; Doi, Y.; et al. (March 2012). "Star formation and disk properties in Pismis 24". Astronomy & Astrophysics. 539: A119. arXiv:1201.0833. Bibcode:2012A&A...539A.119F. doi:10.1051/0004-6361/201015914. ISSN 0004-6361. S2CID 73612793.
  63. ^ Hainich, R.; Pasemann, D.; Todt, H.; Shenar, T.; Sander, A.; Hamann, W. -R (2015). "Wolf-Rayet stars in the Small Magellanic Cloud. I. Analysis of the single WN stars". Astronomy & Astrophysics. 581 (21): 30. arXiv:1507.04000. Bibcode:2015A&A...581A..21H. doi:10.1051/0004-6361/201526241. S2CID 56230998.
  64. ^ Skiff, B. A. (October 2014). "VizieR Online Data Catalog: Catalogue of Stellar Spectral Classifications (Skiff, 2009- )". VizieR On-Line Data Catalog: B/Mk. Originally Published in: Lowell Observatory (October 2014). 1. Bibcode:2014yCat....1.2023S. S2CID 215961366.
  65. ^ McEvoy, C.M.; Dufton, P.L.; Evans, C.J.; Kalari, V.M.; Markova, N.; Simón-Díaz, S.; et al. (March 2015). "The VLT-FLAMES Tarantula Survey: XIX. B-type supergiants: Atmospheric parameters and nitrogen abundances to investigate the role of binarity and the width of the main sequence⋆". Astronomy & Astrophysics. 575: A70. arXiv:1412.2705. Bibcode:2015A&A...575A..70M. doi:10.1051/0004-6361/201425202. ISSN 0004-6361. S2CID 39125418.
  66. Kastner, Joel H.; Buchanan, Catherine L.; Sargent, B.; Forrest, W. J. (10 February 2006). "Spitzer Spectroscopy of Dusty Disks around B[e] Hypergiants in the Large Magellanic Cloud". The Astrophysical Journal. 638 (1): L29 – L32. Bibcode:2006ApJ...638L..29K. doi:10.1086/500804. ISSN 0004-637X. S2CID 121769413.
  67. ^ Høg, E.; Fabricius, C.; Makarov, V.V.; Urban, S.; Corbin, T.; Wycoff, G.; et al. (March 2000). "The Tycho-2 catalogue of the 2.5 million brightest stars". Astronomy & Astrophysics. 355: L27 – L30. Bibcode:2000A&A...355L..27H. ISSN 0004-6361. S2CID 17128864.
  68. Orosz, Jerome A.; McClintock, Jeffrey E.; Narayan, Ramesh; Bailyn, Charles D.; Hartman, Joel D.; Macri, Lucas; et al. (October 2007). "A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33". Nature. 449 (7164): 872–875. arXiv:0710.3165. Bibcode:2007Natur.449..872O. doi:10.1038/nature06218. ISSN 0028-0836. PMID 17943124. S2CID 4311574.
  69. Grimm, H.-J.; McDowell, J.; Zezas, A.; Kim, D.-W.; Fabbiano, G. (December 2005). "The X-Ray Binary Population in M33. I. Source List and Luminosity Function". The Astrophysical Journal Supplement Series. 161 (2): 271–303. arXiv:astro-ph/0506353. Bibcode:2005ApJS..161..271G. doi:10.1086/468185. ISSN 0067-0049. S2CID 119381693.
  70. Rauw, G.; Sana, H.; Gosset, E.; Vreux, J.-M.; Jehin, E.; Parmentier, G. (August 2000). "A new orbital solution for the massive binary system HD 93403". Astronomy & Astrophysics. 360: 1003–1010. Bibcode:2000A&A...360.1003R. ISSN 0004-6361. S2CID 13886945.
  71. Massey, P.; de Gioia-Eastwood, K.; Waterhouse, E. (2001). "The progenitor masses of Wolf-Rayet stars and luminous blue variables determined from cluster turnoffs. II. Results from 12 Galactic clusters and OB associations". The Astronomical Journal. 121 (2): 1050–1070. arXiv:astro-ph/0010654. Bibcode:2001AJ....121.1050M. doi:10.1086/318769. S2CID 53345173.
  72. ^ Shenar, T.; Hainich, R.; Todt, H.; Sander, A.; Hamann, W.-R.; Moffat, A.F.J.; et al. (July 2016). "Wolf-Rayet stars in the Small Magellanic Cloud: II. Analysis of the binaries". Astronomy & Astrophysics. 591: A22. arXiv:1604.01022. Bibcode:2016A&A...591A..22S. doi:10.1051/0004-6361/201527916. ISSN 0004-6361. S2CID 119255408.
  73. ^ Bouret, J.-C.; Hillier, D.J.; Lanz, T.; Fullerton, A.W. (2012). "Properties of galactic early-type O-supergiants: A combined FUV-UV and optical analysis". Astronomy & Astrophysics. 544: A67. arXiv:1205.3075. Bibcode:2012A&A...544A..67B. doi:10.1051/0004-6361/201118594. S2CID 119280104.
  74. ^ Comerón, F.; Pasquali, A. (July 2012). "New members of the massive stellar population in Cygnus". Astronomy & Astrophysics. 543: A101. Bibcode:2012A&A...543A.101C. doi:10.1051/0004-6361/201219022. ISSN 0004-6361. S2CID 73520813.
  75. Krtička, J.; Kubát, J.; Krtičková, I. (July 2015). "X-ray irradiation of the winds in binaries with massive components". Astronomy & Astrophysics. 579: A111. arXiv:1505.03411. Bibcode:2015A&A...579A.111K. doi:10.1051/0004-6361/201525637. ISSN 0004-6361. S2CID 119120927.
  76. Massey, Philip (July 2002). "A UBVR CCD Survey of the Magellanic Clouds". The Astrophysical Journal Supplement Series. 141 (1): 81–122. arXiv:astro-ph/0110531. Bibcode:2002ApJS..141...81M. doi:10.1086/338286. ISSN 0067-0049. S2CID 119447348.
  77. Liermann, Adriane; Hamann, Wolf-Rainer; Oskinova, Lidia M.; Todt, Helge (January 2011). "High-mass stars in the Galactic center Quintuplet cluster". Société Royale des Sciences de Liège, Bulletin. 80: 160–164. Bibcode:2011BSRSL..80..160L. ISSN 0037-9565. S2CID 116895316.
  78. Clark, J.S.; Lohr, M.E.; Patrick, L.R.; Najarro, F.; Dong, H.; Figer, D.F. (October 2018). "An updated stellar census of the Quintuplet cluster". Astronomy & Astrophysics. 618: A2. arXiv:1805.10139. Bibcode:2018A&A...618A...2C. doi:10.1051/0004-6361/201833041. ISSN 0004-6361. S2CID 53501337.
  79. Testor, G.; Niemela, V. (June 1998). "The OB associations LH 101 and LH 104 in the HII region N158 of the LMC". Astronomy and Astrophysics Supplement Series. 130 (3): 527–538. Bibcode:1998A&AS..130..527T. doi:10.1051/aas:1998241. ISSN 0365-0138. S2CID 55801387.
  80. Burggraf, B.; Weis, K.; Bomans, D.J. (December 2006). "LBVs in M33: Their environments and ages". Stellar Evolution at Low Metallicity: Mass loss, explosions, cosmology. ASP Conference Series. Vol. 353. Astronomical Society of the Pacific. p. 245. Bibcode:2006ASPC..353..245B. ISSN 1050-3390. S2CID 230292777.
  81. Massey, Philip; Neugent, Kathryn F.; Smart, Brianna M. (19 August 2016). "A spectroscopic survey of massive stars in M31 and M33". The Astronomical Journal. 152 (3): 62. arXiv:1604.00112. Bibcode:2016AJ....152...62M. doi:10.3847/0004-6256/152/3/62. ISSN 1538-3881. S2CID 35672588.
  82. de Vries, N.; Portegies Zwart, S.; Figueira, J. (2014). "The evolution of triples with a Roche lobe filling outer star". Monthly Notices of the Royal Astronomical Society. 438 (3): 1909. arXiv:1309.1475. Bibcode:2014MNRAS.438.1909D. doi:10.1093/mnras/stt1688.
  83. Hill, G. M.; Moffat, A. F. J.; St-Louis, N. (1 October 2002). "Modelling the colliding-winds spectra of the 19-d WR + OB binary in the massive triple system θ Muscae". Monthly Notices of the Royal Astronomical Society. 335 (4): 1069–1078. Bibcode:2002MNRAS.335.1069H. doi:10.1046/j.1365-8711.2002.05694.x. ISSN 0035-8711. S2CID 121923927.
  84. Zsargó, J.; Fierro-Santillán, C.R.; Klapp, J.; Arrieta, A.; Arias, L.; Valencia, J.M.; et al. (November 2020). "Creating and using large grids of precalculated model atmospheres for a rapid analysis of stellar spectra". Astronomy & Astrophysics. 643: A88. arXiv:2009.10879. Bibcode:2020A&A...643A..88Z. doi:10.1051/0004-6361/202038066. ISSN 0004-6361. S2CID 225194447.
  85. Mitschang, Arik W.; Schulz, Norbert S.; Huenemoerder, David P.; Nichols, Joy S.; Testa, Paola (2011). "Detailed X-ray line properties of θ Ori A in quiescence". The Astrophysical Journal. 734 (1): 14. arXiv:1009.1896. Bibcode:2011ApJ...734...14M. doi:10.1088/0004-637X/734/1/14. S2CID 15568141.
  86. Aldoretta, E.J.; Caballero-Nieves, S.M.; Gies, D.R.; Nelan, E.P.; Wallace, D.J.; Hartkopf, W.I.; et al. (2015). "The multiplicity of massive stars: A high angular-resolution survey with the guidance sensor". The Astronomical Journal. 149 (1): 26. arXiv:1410.0021. Bibcode:2015AJ....149...26A. doi:10.1088/0004-6256/149/1/26. S2CID 58911264.
  87. ^ Repolust, T.; Puls, J.; Herrero, A. (February 2004). "Stellar and wind parameters of Galactic O-stars: The influence of line-blocking/blanketing". Astronomy & Astrophysics. 415 (1): 349–376. Bibcode:2004A&A...415..349R. doi:10.1051/0004-6361:20034594. ISSN 0004-6361. S2CID 56418916.
  88. Rivet, J-P; Siciak, A.; de Almeida, E.S.G.; Vakili, F.; Domiciano de Souza, A.; Fouché, M.; et al. (2020). "Intensity interferometry of P Cygni in the H α emission line: Towards distance calibration of LBV supergiant stars". Monthly Notices of the Royal Astronomical Society. 494 (1): 218–227. arXiv:1910.08366. Bibcode:2020MNRAS.494..218R. doi:10.1093/mnras/staa588. S2CID 204788654.
  89. Kozok, J. R. (September 1985). "Photometric observations of emission B-stars in the southern Milky Way". Astronomy and Astrophysics Supplement Series. 61: 387–405. Bibcode:1985A&AS...61..387K.
  90. Hummel, C. A.; Rivinius, Th.; Nieva, M.-F.; Stahl, O.; van Belle, G.; Zavala, R. T. (2013). "Dynamical mass of the O-type supergiant in ζ Orionis A". Astronomy & Astrophysics. 554: A52. arXiv:1306.0330. Bibcode:2013A&A...554A..52H. doi:10.1051/0004-6361/201321434. ISSN 0004-6361. S2CID 53645495.
  91. Balega, Yu. Yu.; Chentsov, E.L.; Leushin, V.V.; Rzaev, A.Kh.; Weigelt, G. (2014). "Young massive binary θ Ori C: Radial velocities of components". Astrophysical Bulletin. 69 (1): 46–57. Bibcode:2014AstBu..69...46B. doi:10.1134/S1990341314010052. ISSN 1990-3413. S2CID 120838635.
  92. ^ Searle, S. C.; Prinja, R. K.; Massa, D.; Ryans, R. (2008). "Quantitative studies of the optical and UV spectra of Galactic early B supergiants. I. Fundamental parameters". Astronomy and Astrophysics. 481 (3): 777–797. arXiv:0801.4289. Bibcode:2008A&A...481..777S. doi:10.1051/0004-6361:20077125. S2CID 1552752.
  93. ^ Tetzlaff, N.; Neuhäuser, R.; Hohle, M. M. (2011). "A catalogue of young runaway Hipparcos stars within 3 kpc from the Sun". Monthly Notices of the Royal Astronomical Society. 410 (1): 190–200. arXiv:1007.4883. Bibcode:2011MNRAS.410..190T. doi:10.1111/j.1365-2966.2010.17434.x. S2CID 118629873.
  94. Kashi, Amit; Soker, Noam (1 November 2010). "Periastron Passage Triggering of the 19th Century Eruptions of Eta Carinae". The Astrophysical Journal. 723 (1): 602–611. arXiv:0912.1439. Bibcode:2010ApJ...723..602K. doi:10.1088/0004-637X/723/1/602. ISSN 0004-637X. S2CID 118399302.
  95. ^ North, J.R.; Tuthill, P.G.; Tango, W.J.; Davis, J. (2007-05-01). "γ2 Velorum: Orbital solution and fundamental parameter determination with SUSI". Monthly Notices of the Royal Astronomical Society. 377 (1): 415–424. arXiv:astro-ph/0702375. Bibcode:2007MNRAS.377..415N. doi:10.1111/j.1365-2966.2007.11608.x. ISSN 0035-8711. S2CID 16425744.
  96. ^ Hoffleit, Dorrit; Jaschek, Carlos (1991). The Bright star catalogue (5th Revised ed.). New Haven, Conn.: Yale University Observatory. Bibcode:1991bsc..book.....H.
  97. Howarth, Ian D; van Leeuwen, Floor (2019-01-31). "The distance, rotation, and physical parameters of ζ Pup". Monthly Notices of the Royal Astronomical Society. 484 (4): 5350. arXiv:1901.08020. Bibcode:2019MNRAS.484.5350H. doi:10.1093/mnras/stz291. ISSN 0035-8711.
  98. Shenar, T.; Oskinova, L.; Hamann, W.-R.; Corcoran, M.F.; Moffat, A.F.J.; Pablo, H.; et al. (2015). "A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. IV. A Multiwavelength, Non-LTE Spectroscopic Analysis". Astrophysical Journal. 809 (2): 135. arXiv:1503.03476. Bibcode:2015ApJ...809..135S. doi:10.1088/0004-637X/809/2/135. hdl:10045/59172. S2CID 14909574.
  99. Tokovinin, A A. (1997). "MSC - a catalogue of physical multiple stars". Astronomy and Astrophysics Supplement Series. 124: 75–84. Bibcode:1997A&AS..124...75T. doi:10.1051/aas:1997181.
  100. ^ Marchenko, Sergey V.; Rauw, Gregor; Antokhina, Eleonora A.; Antokhin, Igor I.; Ballereau, Dominique; Chauville, Jacques; et al. (2000). "Coordinated monitoring of the eccentric O-star binary Iota Orionis: Optical spectroscopy and photometry". Monthly Notices of the Royal Astronomical Society. 317 (2): 333. Bibcode:2000MNRAS.317..333M. doi:10.1046/j.1365-8711.2000.03542.x.
  101. ^ Nicolet, B. (1978). "Photoelectric photometric Catalogue of homogeneous measurements in the UBV System". Astronomy and Astrophysics Supplement Series. 34: 1–49. Bibcode:1978A&AS...34....1N.
  102. Dufton, P.L.; Smartt, S.J.; Lee, J.K.; Ryans, R.S.I.; Hunter, I.; Evans, C.J.; et al. (2006). "The VLT-FLAMES survey of massive stars: stellar parameters and rotational velocities in NGC 3293, NGC 4755 and NGC 6611". Astronomy & Astrophysics. 457 (1): 265–280. arXiv:astro-ph/0606409. Bibcode:2006A&A...457..265D. doi:10.1051/0004-6361:20065392. ISSN 0004-6361. S2CID 15874925.
  103. Shultz, M.; Wade, G.A.; Petit, V.; Grunhut, J.; Neiner, C.; Hanes, D.; et al. (MiMeS Collaboration) (2014). "An observational evaluation of magnetic confinement in the winds of BA supergiants". Monthly Notices of the Royal Astronomical Society. 438 (2): 1114. arXiv:1311.5116. Bibcode:2014MNRAS.438.1114S. doi:10.1093/mnras/stt2260. S2CID 118557626.
  104. Smith, M.A. (August 1981). "Nonradial pulsations in the zero-age main-sequence star upsilon Orionis /09.5 V/". The Astrophysical Journal. 248: 214–221. Bibcode:1981ApJ...248..214S. doi:10.1086/159145. ISSN 0004-637X.
  105. Nieva, M.-F. (2013). "Temperature, gravity, and bolometric correction scales for non-supergiant OB stars". Astronomy & Astrophysics. 550: A26. arXiv:1212.0928. Bibcode:2013A&A...550A..26N. doi:10.1051/0004-6361/201219677. ISSN 0004-6361. S2CID 119275940.
  106. ^ Simón-Díaz, S.; Caballero, J.A.; Lorenzo, J.; Maíz Apellániz, J.; Schneider, F.R.N.; Negueruela, I.; et al. (2015). "Orbital and Physical Properties of the σ Ori Aa, Ab, B Triple System". The Astrophysical Journal. 799 (2): 169. arXiv:1412.3469. Bibcode:2015ApJ...799..169S. doi:10.1088/0004-637X/799/2/169. S2CID 118500350.
  107. ^ Mason, Brian D.; Wycoff, Gary L.; Hartkopf, William I.; Douglass, Geoffrey G.; Worley, Charles E. (2001). "The 2001 US Naval Observatory Double Star CD-ROM. I. The Washington Double Star Catalog". The Astronomical Journal. 122 (6): 3466. Bibcode:2001AJ....122.3466M. doi:10.1086/323920.
  108. Martins, F.; Schaerer, D.; Hillier, D. J.; Meynadier, F.; Heydari-Malayeri, M.; Walborn, N. R. (2005). "O stars with weak winds: the Galactic case". Astronomy & Astrophysics. 441 (2): 735–762. arXiv:astro-ph/0507278. Bibcode:2005A&A...441..735M. doi:10.1051/0004-6361:20052927. ISSN 0004-6361. S2CID 11547293.
  109. ^ Hohle, M.M.; Neuhäuser, R.; Schutz, B.F. (April 2010). "Masses and luminosities of O- and B-type stars and red supergiants". Astronomische Nachrichten. 331 (4): 349. arXiv:1003.2335. Bibcode:2010AN....331..349H. doi:10.1002/asna.200911355. S2CID 111387483.
  110. Przybilla, N.; Firnstein, M.; Nieva, M.F.; Meynet, G.; Maeder, A. (2010). "Mixing of CNO-cycled matter in massive stars". Astronomy and Astrophysics. 517: A38. arXiv:1005.2278. Bibcode:2010A&A...517A..38P. doi:10.1051/0004-6361/201014164. S2CID 55532189.
  111. Firnstein, M.; Przybilla, N. (2012). "Quantitative spectroscopy of Galactic BA-type supergiants. I. Atmospheric parameters". Astronomy & Astrophysics. 543: A80. arXiv:1207.0308. Bibcode:2012A&A...543A..80F. doi:10.1051/0004-6361/201219034. S2CID 54725386.
  112. ^ Johnson, H.L.; Iriarte, B.; Mitchell, R.I.; Wisniewskj, W.Z. (1966). "UBVRIJKL photometry of the bright stars". Communications of the Lunar and Planetary Laboratory. 4 (99): 99. Bibcode:1966CoLPL...4...99J.
  113. Nieva, María-Fernanda; Przybilla, Norbert (2014). "Fundamental properties of nearby single early B-type stars". Astronomy & Astrophysics. 566: A7. arXiv:1412.1418. Bibcode:2014A&A...566A...7N. doi:10.1051/0004-6361/201423373. S2CID 119227033.
  114. Mazumdar, A.; Briquet, M.; Desmet, M.; Aerts, C. (November 2006). "An asteroseismic study of the β Cephei star β Canis Majoris". Astronomy and Astrophysics. 459 (2): 589–596. arXiv:astro-ph/0607261. Bibcode:2006A&A...459..589M. doi:10.1051/0004-6361:20064980. S2CID 11807580.
  115. Cousins, A.W.J. (1972). "UBV Photometry of Some Very Bright Stars". Monthly Notes of the Astronomical Society of Southern Africa. 31: 69. Bibcode:1972MNSSA..31...69C.
  116. Libich, J.; Harmanec, P.; Vondrák, J.; Yang, S.; Hadrava, P.; Aerts, C.; et al. (February 2006). "The new orbital elements and properties of ɛ Persei". Astronomy and Astrophysics. 446 (2): 583–589. Bibcode:2006A&A...446..583L. doi:10.1051/0004-6361:20053032. hdl:2066/35168.
  117. Lutz, T.E.; Lutz, J.H. (June 1977). "Spectral classification and UBV photometry of bright visual double stars". Astronomical Journal. 82: 431–434. Bibcode:1977AJ.....82..431L. doi:10.1086/112066.
  118. Miroshnichenko, A.S.; Pasechnik, A.V.; Manset, N.; Carciofi, A.C.; Rivinius, Th.; Štefl, S.; et al. (2013). "The 2011 periastron passage of the Be binary δ Scorpii". The Astrophysical Journal. 766 (2): 119. arXiv:1302.4021. Bibcode:2013ApJ...766..119M. doi:10.1088/0004-637X/766/2/119. S2CID 38692193.
  119. Gutierrez-Moreno, Adelina; Moreno, Hugo (1968-06-01). "A Photometric Investigation of the SCORPlO-CENTAURUS Association". The Astrophysical Journal Supplement Series. 15: 459. Bibcode:1968ApJS...15..459G. doi:10.1086/190168. ISSN 0067-0049.
  120. Nugis, T.; Lamers, H.J.G.L.M. (2000). "Mass-loss rates of Wolf-Rayet stars as a function of stellar parameters". Astronomy and Astrophysics. 360: 227. Bibcode:2000A&A...360..227N.
  121. Challouf, M.; Nardetto, N.; Mourard, D.; Graczyk, D.; Aroui, H.; Chesneau, O.; et al. (2014). "Improving the surface brightness-color relation for early-type stars using optical interferometry". Astronomy & Astrophysics. 570: A104. arXiv:1409.1351. Bibcode:2014A&A...570A.104C. doi:10.1051/0004-6361/201423772. S2CID 14624307.
  122. Kudritzki, R.P.; Reimers, D. (1978). "On the absolute scale of mass-loss in red giants. II. Circumstellar absorption lines in the spectrum of α Sco B and mass-loss of α Sco A". Astronomy and Astrophysics. 70: 227. Bibcode:1978A&A....70..227K.
  123. Dervişoğlu, A.; Tout, Christopher A.; Ibanoğlu, C. (August 2010). "Spin angular momentum evolution of the long-period Algols". Monthly Notices of the Royal Astronomical Society. 406 (2): 1071–1083. arXiv:1003.4392. Bibcode:2010MNRAS.406.1071D. doi:10.1111/j.1365-2966.2010.16732.x. S2CID 119198387.
  124. Nicolet, B. (October 1978). "Catalogue of homogeneous data in the UBV photoelectric photometric system". Astronomy and Astrophysics Supplement Series. 34: 1–49. Bibcode:1978A&AS...34....1N.
  125. ^ David, Trevor J.; Hillenbrand, Lynne A. (2015). "The ages of early-type stars: Strömgren photometric methods calibrated, validated, tested, and applied to hosts and prospective hosts of directly imaged exoplanets". The Astrophysical Journal. 804 (2): 146. arXiv:1501.03154. Bibcode:2015ApJ...804..146D. doi:10.1088/0004-637X/804/2/146. S2CID 33401607.
  126. Zorec, J.; Frémat, Y.; Cidale, L. (2005). "On the evolutionary status of Be stars. I. Field Be stars near the Sun". Astronomy and Astrophysics. 441 (1): 235–248. arXiv:astro-ph/0509119. Bibcode:2005A&A...441..235Z. doi:10.1051/0004-6361:20053051. S2CID 17592657.
  127. Fernie, J.D. (May 1983). "New UBVRI photometry for 900 supergiants". Astrophysical Journal Supplement Series. 52: 7–22. Bibcode:1983ApJS...52....7F. doi:10.1086/190856.
  128. Hubrig, S.; Briquet, M.; de Cat, P.; Schöller, M.; Morel, T.; Ilyin, I. (2009). "New magnetic field measurements of β Cephei stars and slowly pulsating B stars". Astronomische Nachrichten. 330 (4): 317–329. arXiv:0902.1314. Bibcode:2009AN....330..317H. doi:10.1002/asna.200811187. S2CID 17497112.
  129. de Almeida, E.S.G.; Meilland, A.; Domiciano de Souza, A.; Stee, P.; Mourard, D.; Nardetto, N.; et al. (April 2020). "Visible and near-infrared spectro-interferometric analysis of the edge-on Be star o Aquarii". Astronomy & Astrophysics. 636: 23. arXiv:2002.09552. Bibcode:2020A&A...636A.110D. doi:10.1051/0004-6361/201936039. S2CID 211258993. A110.
  130. Feinstein, A.; Marraco, H.G. (November 1979). "The photometric behavior of Be Stars". Astronomical Journal. 84: 1713–1725. Bibcode:1979AJ.....84.1713F. doi:10.1086/112600.
  131. North, P. (1998). "Do SI stars undergo any rotational braking?". Astronomy and Astrophysics. 334: 181–187. arXiv:astro-ph/9802286. Bibcode:1998A&A...334..181N.
  132. Mermilliod, J.-C. (1986). Compilation of Eggen's UBV data, transformed to UBV (unpublished). Catalogue of Eggen's UBV Data (Report). SIMBAD. Bibcode:1986EgUBV........0M.
  133. Mamajek, Eric E.; Lawson, Warrick A.; Feigelson, Eric D. (1999). "The η Chamaeleontis cluster: A remarkable new nearby young open cluster". The Astrophysical Journal. 516 (2): L77 – L80. Bibcode:1999ApJ...516L..77M. doi:10.1086/312005.
  134. Fang, M.; van Boekel, R.; Bouwman, J.; Henning, Th.; Lawson, W.A.; Sicilia-Aguilar, A. (January 2013). "Young stars in ϵ Chamaleontis and their disks: Disk evolution in sparse associations". Astronomy & Astrophysics. 549: A15. arXiv:1209.5832. Bibcode:2013A&A...549A..15F. doi:10.1051/0004-6361/201118528. ISSN 0004-6361. S2CID 118332644.
  135. ^ Zorec, J.; Royer, F. (2012). "Rotational velocities of A-type stars". Astronomy & Astrophysics. 537: A120. arXiv:1201.2052. Bibcode:2012A&A...537A.120Z. doi:10.1051/0004-6361/201117691. S2CID 55586789.
  136. Corben, P.M.; Stoy, R.H. (1968). "Photoelectric Magnitudes and Colours for Bright Southern Stars". Monthly Notes of the Astronomical Society of Southern Africa. 27: 11. Bibcode:1968MNSSA..27...11C.
  137. Anderson, E.; Francis, Ch. (2012). "XHIP: An extended hipparcos compilation". Astronomy Letters. 38 (5): 331. arXiv:1108.4971. Bibcode:2012AstL...38..331A. doi:10.1134/S1063773712050015. S2CID 119257644.
  138. Luzum, Brian; Capitaine, Nicole; Fienga, Agnès; Folkner, William; Fukushima, Toshio; Hilton, James; et al. (August 2011). "The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy". Celestial Mechanics and Dynamical Astronomy. 110 (4): 293–304. Bibcode:2011CeMDA.110..293L. doi:10.1007/s10569-011-9352-4. ISSN 0923-2958. S2CID 122755461.
  139. Bessell, M.S.; Castelli, F.; Plez, B. (May 1998). "Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O–M stars". Astronomy & Astrophysics. 333: 231–250. Bibcode:1998A&A...333..231B. ISSN 0004-6361. S2CID 10513623.
  140. Mamajek, E.E.; Prsa, A.; Torres, G.; Harmanec, P.; Asplund, M.; Bennett, P.D.; et al. (October 2015). "IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties". arXiv:1510.07674 .

External links

Stars
Formation
Evolution
Classification
Remnants
Hypothetical
Nucleosynthesis
Structure
Properties
Star systems
Earth-centric
observations
Lists
Related
Supernovae
Classes
Physics of
Related
Progenitors
Remnants
Discovery
Lists
Notable
Research
Black holes
Types
Size
Formation
Properties
Issues
Metrics
Alternatives
Analogs
Lists
Related
Notable
Portals: Categories: