Misplaced Pages

Motzkin–Taussky theorem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Theorem on linear operators
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (September 2023) (Learn how and when to remove this message)

The Motzkin–Taussky theorem is a result from operator and matrix theory about the representation of a sum of two bounded, linear operators (resp. matrices). The theorem was proven by Theodore Motzkin and Olga Taussky-Todd.

The theorem is used in perturbation theory, where e.g. operators of the form

T + x T 1 {\displaystyle T+xT_{1}}

are examined.

Statement

Let X {\displaystyle X} be a finite-dimensional complex vector space. Furthermore, let A , B B ( X ) {\displaystyle A,B\in B(X)} be such that all linear combinations

T = α A + β B {\displaystyle T=\alpha A+\beta B}

are diagonalizable for all α , β C {\displaystyle \alpha ,\beta \in \mathbb {C} } . Then all eigenvalues of T {\displaystyle T} are of the form

λ T = α λ A + β λ B {\displaystyle \lambda _{T}=\alpha \lambda _{A}+\beta \lambda _{B}}

(i.e. they are linear in α {\displaystyle \alpha } und β {\displaystyle \beta } ) and λ A , λ B {\displaystyle \lambda _{A},\lambda _{B}} are independent of the choice of α , β {\displaystyle \alpha ,\beta } .

Here λ A {\displaystyle \lambda _{A}} stands for an eigenvalue of A {\displaystyle A} .

Comments

  • Motzkin and Taussky call the above property of the linearity of the eigenvalues in α , β {\displaystyle \alpha ,\beta } property L.

Bibliography

Notes

  1. Motzkin, T. S.; Taussky, Olga (1952). "Pairs of Matrices with Property L". Transactions of the American Mathematical Society. 73 (1): 108–114. doi:10.2307/1990825. JSTOR 1990825. PMC 1063886. PMID 16589359.
  2. Kato, Tosio (1995). Perturbation Theory for Linear Operators. Classics in Mathematics. Vol. 132 (2 ed.). Berlin, Heidelberg: Springer. p. 86. doi:10.1007/978-3-642-66282-9. ISBN 978-3-540-58661-6.
  3. Motzkin, T. S.; Taussky, Olga (1955). "Pairs of Matrices With Property L. II". Transactions of the American Mathematical Society. 80 (2): 387–401. doi:10.2307/1992996. ISSN 0002-9947. JSTOR 1992996.
Categories: