In probability theory , the multidimensional Chebyshev's inequality is a generalization of Chebyshev's inequality , which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount.
Let
X
{\displaystyle X}
be an
N
{\displaystyle N}
-dimensional random vector with expected value
μ
=
E
[
X
]
{\displaystyle \mu =\operatorname {E} }
and covariance matrix
V
=
E
[
(
X
−
μ
)
(
X
−
μ
)
T
]
.
{\displaystyle V=\operatorname {E} .\,}
If
V
{\displaystyle V}
is a positive-definite matrix , for any real number
t
>
0
{\displaystyle t>0}
:
Pr
(
(
X
−
μ
)
T
V
−
1
(
X
−
μ
)
>
t
)
≤
N
t
2
{\displaystyle \Pr \left({\sqrt {(X-\mu )^{T}V^{-1}(X-\mu )}}>t\right)\leq {\frac {N}{t^{2}}}}
Proof
Since
V
{\displaystyle V}
is positive-definite, so is
V
−
1
{\displaystyle V^{-1}}
. Define the random variable
y
=
(
X
−
μ
)
T
V
−
1
(
X
−
μ
)
.
{\displaystyle y=(X-\mu )^{T}V^{-1}(X-\mu ).}
Since
y
{\displaystyle y}
is positive, Markov's inequality holds:
Pr
(
(
X
−
μ
)
T
V
−
1
(
X
−
μ
)
>
t
)
=
Pr
(
y
>
t
)
=
Pr
(
y
>
t
2
)
≤
E
[
y
]
t
2
.
{\displaystyle \Pr \left({\sqrt {(X-\mu )^{T}V^{-1}(X-\mu )}}>t\right)=\Pr({\sqrt {y}}>t)=\Pr(y>t^{2})\leq {\frac {\operatorname {E} }{t^{2}}}.}
Finally,
E
[
y
]
=
E
[
(
X
−
μ
)
T
V
−
1
(
X
−
μ
)
]
=
E
[
trace
(
V
−
1
(
X
−
μ
)
(
X
−
μ
)
T
)
]
=
trace
(
V
−
1
V
)
=
N
.
{\displaystyle {\begin{aligned}\operatorname {E} &=\operatorname {E} \\&=\operatorname {E} \\&=\operatorname {trace} (V^{-1}V)=N\end{aligned}}.}
Infinite dimensions
There is a straightforward extension of the vector version of Chebyshev's inequality to infinite dimensional settings. Let X be a random variable which takes values in a Fréchet space
X
{\displaystyle {\mathcal {X}}}
(equipped with seminorms || ⋅ ||α ). This includes most common settings of vector-valued random variables, e.g., when
X
{\displaystyle {\mathcal {X}}}
is a Banach space (equipped with a single norm), a Hilbert space , or the finite-dimensional setting as described above.
Suppose that X is of "strong order two ", meaning that
E
(
‖
X
‖
α
2
)
<
∞
{\displaystyle \operatorname {E} \left(\|X\|_{\alpha }^{2}\right)<\infty }
for every seminorm || ⋅ ||α . This is a generalization of the requirement that X have finite variance, and is necessary for this strong form of Chebyshev's inequality in infinite dimensions. The terminology "strong order two" is due to Vakhania .
Let
μ
∈
X
{\displaystyle \mu \in {\mathcal {X}}}
be the Pettis integral of X (i.e., the vector generalization of the mean), and let
σ
a
:=
E
‖
X
−
μ
‖
α
2
{\displaystyle \sigma _{a}:={\sqrt {\operatorname {E} \|X-\mu \|_{\alpha }^{2}}}}
be the standard deviation with respect to the seminorm || ⋅ ||α . In this setting we can state the following:
General version of Chebyshev's inequality.
∀
k
>
0
:
Pr
(
‖
X
−
μ
‖
α
≥
k
σ
α
)
≤
1
k
2
.
{\displaystyle \forall k>0:\quad \Pr \left(\|X-\mu \|_{\alpha }\geq k\sigma _{\alpha }\right)\leq {\frac {1}{k^{2}}}.}
Proof. The proof is straightforward, and essentially the same as the finitary version. If σα = 0, then X is constant (and equal to μ) almost surely, so the inequality is trivial.
If
‖
X
−
μ
‖
α
≥
k
σ
α
{\displaystyle \|X-\mu \|_{\alpha }\geq k\sigma _{\alpha }}
then ||X − μ ||α > 0, so we may safely divide by ||X − μ ||α . The crucial trick in Chebyshev's inequality is to recognize that
1
=
‖
X
−
μ
‖
α
2
‖
X
−
μ
‖
α
2
{\displaystyle 1={\tfrac {\|X-\mu \|_{\alpha }^{2}}{\|X-\mu \|_{\alpha }^{2}}}}
.
The following calculations complete the proof:
Pr
(
‖
X
−
μ
‖
α
≥
k
σ
α
)
=
∫
Ω
1
‖
X
−
μ
‖
α
≥
k
σ
α
d
Pr
=
∫
Ω
(
‖
X
−
μ
‖
α
2
‖
X
−
μ
‖
α
2
)
⋅
1
‖
X
−
μ
‖
α
≥
k
σ
α
d
Pr
≤
∫
Ω
(
‖
X
−
μ
‖
α
2
(
k
σ
α
)
2
)
⋅
1
‖
X
−
μ
‖
α
≥
k
σ
α
d
Pr
≤
1
k
2
σ
α
2
∫
Ω
‖
X
−
μ
‖
α
2
d
Pr
1
‖
X
−
μ
‖
α
≥
k
σ
α
≤
1
=
1
k
2
σ
α
2
(
E
‖
X
−
μ
‖
α
2
)
=
1
k
2
σ
α
2
(
σ
α
2
)
=
1
k
2
{\displaystyle {\begin{aligned}\Pr \left(\|X-\mu \|_{\alpha }\geq k\sigma _{\alpha }\right)&=\int _{\Omega }\mathbf {1} _{\|X-\mu \|_{\alpha }\geq k\sigma _{\alpha }}\,\mathrm {d} \Pr \\&=\int _{\Omega }\left({\frac {\|X-\mu \|_{\alpha }^{2}}{\|X-\mu \|_{\alpha }^{2}}}\right)\cdot \mathbf {1} _{\|X-\mu \|_{\alpha }\geq k\sigma _{\alpha }}\,\mathrm {d} \Pr \\&\leq \int _{\Omega }\left({\frac {\|X-\mu \|_{\alpha }^{2}}{(k\sigma _{\alpha })^{2}}}\right)\cdot \mathbf {1} _{\|X-\mu \|_{\alpha }\geq k\sigma _{\alpha }}\,\mathrm {d} \Pr \\&\leq {\frac {1}{k^{2}\sigma _{\alpha }^{2}}}\int _{\Omega }\|X-\mu \|_{\alpha }^{2}\,\mathrm {d} \Pr &&\mathbf {1} _{\|X-\mu \|_{\alpha }\geq k\sigma _{\alpha }}\leq 1\\&={\frac {1}{k^{2}\sigma _{\alpha }^{2}}}\left(\operatorname {E} \|X-\mu \|_{\alpha }^{2}\right)\\&={\frac {1}{k^{2}\sigma _{\alpha }^{2}}}\left(\sigma _{\alpha }^{2}\right)\\&={\frac {1}{k^{2}}}\end{aligned}}}
References
^ Marshall, Albert W.; Olkin, Ingram (December 1960). "Multivariate Chebyshev Inequalities" . The Annals of Mathematical Statistics . 31 (4): 1001–1014. doi :10.1214/aoms/1177705673 . ISSN 0003-4851 .
Navarro, Jorge (2013-05-24). "A simple proof for the multivariate Chebyshev inequality". arXiv :1305.5646 .
Altomare, Francesco; Campiti, Michele (1994). De Gruyter (ed.). Korovkin-type Approximation Theory and Its Applications . p. 313. doi :10.1515/9783110884586 .
Vakhania, Nikolai Nikolaevich. Probability distributions on linear spaces. New York: North Holland, 1981.
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑