Misplaced Pages

Multiplex (sensor)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (December 2021)
Multiplex is a sensor applied for ecophysiologic research

Multiplex sensor is a hand-held multiparametric optical sensor developed by Force-A. The sensor is a result of 15 years of research on plant autofluorescence conducted by the CNRS (National Center for Scientific Research) and University of Paris-Sud Orsay. It provides accurate and complete information on the physiological state of the crop, allowing real-time and non-destructive measurements of chlorophyll and polyphenols contents in leaves and fruits.

Technology

Multiplex assesses the chlorophyll and polyphenols indices by making use of two attributes of plant fluorescence: the effect of fluorescence re-absorption by chlorophyll and screening effect of polyphenols. The sensor is an optical head which contains:

  • Optical sources (UV, blue, green and red)
  • Detectors (blue-green or yellow, red and far-red (NIR))

Applications

Alongside with other data, Multiplex is designed to provide input for decision support systems (DSS) for a range of crops, including:

  • Fertilization applications
  • Crop quality assessments (nitrogen status, maturity, freshness and disease detection)

As a standalone sensor, Multiplex is a tool for rapid collection of information concerning chlorophyll and flavonoids contents of the plant to be applied on ecophysiological research.

References

  1. Four innovative start-ups stemming from CNRS at the European Research and Innovation Exhibition 2009
  2. ESE Presentation - Lab. Ecologie, Systématique, Evolution - Technology Transfer
  3. Lejealle, S., Evain, S., Zerovic, Z.G. (2010) Multiplex: a new diagnostic tool for management of nitrogen fertilization of turfgrass. ICPA 2010, Denver Co USA
  4. Agati, G., Foschi, L., Grossi, N., Guglielminetti, L., Cerovic, Z.G., Volterrani. 2013 Fluorescence-based versus reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia matrella turfgrasses European Journal of Agronomy. 45:39?51
  5. Ben Abdallah, F. & Goffart, J.P. 2012 Potential indicators based on leaf flavonoids content for the evaluation of potato crop nitrogen status 11th ICPA Indianapolis Mi USA: pp. 1-18
  6. Naïma B. G., N. Moise, G. Latouche, V. Martinon, L. Mercier, E. Besançon and Z.G. Cerovic Assessment of grapevine maturity using a new portable sensor: non-destructive quantification of anthocyanins Archived 2014-10-25 at the Wayback Machine J. Int. Sci. Vigne Vin, special issue Macrowine, June 2010, 1-8
  7. R.G.V. Bramley, M. L. Moigne, S. Evain, J. Ouzman, L. Florin, E.M. Fadaili, C.J. Hinze and Z.G. Cerovic. 2011 On-the-go sensing of grape berry anthocyanins during commercial harvest: development and prospects Aust. J. Grape Wine Res. doi:10.1111/j.1755-0238.2011.00158.x.
  8. Sankaran, S., Ehsani, R. (2013) Detection of Huanglongbing-Infected Citrus Leaves Using Statistical Models with a Fluorescence Sensor. Society for Applied Spectroscopy, doi:10.1366/12-06790.
Category: