Misplaced Pages

Multivariate Pareto distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In statistics, a multivariate Pareto distribution is a multivariate extension of a univariate Pareto distribution.

There are several different types of univariate Pareto distributions including Pareto Types I−IV and Feller−Pareto. Multivariate Pareto distributions have been defined for many of these types.

Bivariate Pareto distributions

Bivariate Pareto distribution of the first kind

Mardia (1962) defined a bivariate distribution with cumulative distribution function (CDF) given by

F ( x 1 , x 2 ) = 1 i = 1 2 ( x i θ i ) a + ( i = 1 2 x i θ i 1 ) a , x i > θ i > 0 , i = 1 , 2 ; a > 0 , {\displaystyle F(x_{1},x_{2})=1-\sum _{i=1}^{2}\left({\frac {x_{i}}{\theta _{i}}}\right)^{-a}+\left(\sum _{i=1}^{2}{\frac {x_{i}}{\theta _{i}}}-1\right)^{-a},\qquad x_{i}>\theta _{i}>0,i=1,2;a>0,}

and joint density function

f ( x 1 , x 2 ) = ( a + 1 ) a ( θ 1 θ 2 ) a + 1 ( θ 2 x 1 + θ 1 x 2 θ 1 θ 2 ) ( a + 2 ) , x i θ i > 0 , i = 1 , 2 ; a > 0. {\displaystyle f(x_{1},x_{2})=(a+1)a(\theta _{1}\theta _{2})^{a+1}(\theta _{2}x_{1}+\theta _{1}x_{2}-\theta _{1}\theta _{2})^{-(a+2)},\qquad x_{i}\geq \theta _{i}>0,i=1,2;a>0.}

The marginal distributions are Pareto Type 1 with density functions

f ( x i ) = a θ i a x i ( a + 1 ) , x i θ i > 0 , i = 1 , 2. {\displaystyle f(x_{i})=a\theta _{i}^{a}x_{i}^{-(a+1)},\qquad x_{i}\geq \theta _{i}>0,i=1,2.}

The means and variances of the marginal distributions are

E [ X i ] = a θ i a 1 , a > 1 ; V a r ( X i ) = a θ i 2 ( a 1 ) 2 ( a 2 ) , a > 2 ; i = 1 , 2 , {\displaystyle E={\frac {a\theta _{i}}{a-1}},a>1;\quad Var(X_{i})={\frac {a\theta _{i}^{2}}{(a-1)^{2}(a-2)}},a>2;\quad i=1,2,}

and for a > 2, X1 and X2 are positively correlated with

cov ( X 1 , X 2 ) = θ 1 θ 2 ( a 1 ) 2 ( a 2 ) ,  and  cor ( X 1 , X 2 ) = 1 a . {\displaystyle \operatorname {cov} (X_{1},X_{2})={\frac {\theta _{1}\theta _{2}}{(a-1)^{2}(a-2)}},{\text{ and }}\operatorname {cor} (X_{1},X_{2})={\frac {1}{a}}.}

Bivariate Pareto distribution of the second kind

Arnold suggests representing the bivariate Pareto Type I complementary CDF by

F ¯ ( x 1 , x 2 ) = ( 1 + i = 1 2 x i θ i θ i ) a , x i > θ i , i = 1 , 2. {\displaystyle {\overline {F}}(x_{1},x_{2})=\left(1+\sum _{i=1}^{2}{\frac {x_{i}-\theta _{i}}{\theta _{i}}}\right)^{-a},\qquad x_{i}>\theta _{i},i=1,2.}

If the location and scale parameter are allowed to differ, the complementary CDF is

F ¯ ( x 1 , x 2 ) = ( 1 + i = 1 2 x i μ i σ i ) a , x i > μ i , i = 1 , 2 , {\displaystyle {\overline {F}}(x_{1},x_{2})=\left(1+\sum _{i=1}^{2}{\frac {x_{i}-\mu _{i}}{\sigma _{i}}}\right)^{-a},\qquad x_{i}>\mu _{i},i=1,2,}

which has Pareto Type II univariate marginal distributions. This distribution is called a multivariate Pareto distribution of type II by Arnold. (This definition is not equivalent to Mardia's bivariate Pareto distribution of the second kind.)

For a > 1, the marginal means are

E [ X i ] = μ i + σ i a 1 , i = 1 , 2 , {\displaystyle E=\mu _{i}+{\frac {\sigma _{i}}{a-1}},\qquad i=1,2,}

while for a > 2, the variances, covariance, and correlation are the same as for multivariate Pareto of the first kind.

Multivariate Pareto distributions

Multivariate Pareto distribution of the first kind

Mardia's Multivariate Pareto distribution of the First Kind has the joint probability density function given by

f ( x 1 , , x k ) = a ( a + 1 ) ( a + k 1 ) ( i = 1 k θ i ) 1 ( i = 1 k x i θ i k + 1 ) ( a + k ) , x i > θ i > 0 , a > 0 , ( 1 ) {\displaystyle f(x_{1},\dots ,x_{k})=a(a+1)\cdots (a+k-1)\left(\prod _{i=1}^{k}\theta _{i}\right)^{-1}\left(\sum _{i=1}^{k}{\frac {x_{i}}{\theta _{i}}}-k+1\right)^{-(a+k)},\qquad x_{i}>\theta _{i}>0,a>0,\qquad (1)}

The marginal distributions have the same form as (1), and the one-dimensional marginal distributions have a Pareto Type I distribution. The complementary CDF is

F ¯ ( x 1 , , x k ) = ( i = 1 k x i θ i k + 1 ) a , x i > θ i > 0 , i = 1 , , k ; a > 0. ( 2 ) {\displaystyle {\overline {F}}(x_{1},\dots ,x_{k})=\left(\sum _{i=1}^{k}{\frac {x_{i}}{\theta _{i}}}-k+1\right)^{-a},\qquad x_{i}>\theta _{i}>0,i=1,\dots ,k;a>0.\quad (2)}

The marginal means and variances are given by

E [ X i ] = a θ i a 1 ,  for  a > 1 ,  and  V a r ( X i ) = a θ i 2 ( a 1 ) 2 ( a 2 ) ,  for  a > 2. {\displaystyle E={\frac {a\theta _{i}}{a-1}},{\text{ for }}a>1,{\text{ and }}Var(X_{i})={\frac {a\theta _{i}^{2}}{(a-1)^{2}(a-2)}},{\text{ for }}a>2.}

If a > 2 the covariances and correlations are positive with

cov ( X i , X j ) = θ i θ j ( a 1 ) 2 ( a 2 ) , cor ( X i , X j ) = 1 a , i j . {\displaystyle \operatorname {cov} (X_{i},X_{j})={\frac {\theta _{i}\theta _{j}}{(a-1)^{2}(a-2)}},\qquad \operatorname {cor} (X_{i},X_{j})={\frac {1}{a}},\qquad i\neq j.}

Multivariate Pareto distribution of the second kind

Arnold suggests representing the multivariate Pareto Type I complementary CDF by

F ¯ ( x 1 , , x k ) = ( 1 + i = 1 k x i θ i θ i ) a , x i > θ i > 0 , i = 1 , , k . {\displaystyle {\overline {F}}(x_{1},\dots ,x_{k})=\left(1+\sum _{i=1}^{k}{\frac {x_{i}-\theta _{i}}{\theta _{i}}}\right)^{-a},\qquad x_{i}>\theta _{i}>0,\quad i=1,\dots ,k.}

If the location and scale parameter are allowed to differ, the complementary CDF is

F ¯ ( x 1 , , x k ) = ( 1 + i = 1 k x i μ i σ i ) a , x i > μ i , i = 1 , , k , ( 3 ) {\displaystyle {\overline {F}}(x_{1},\dots ,x_{k})=\left(1+\sum _{i=1}^{k}{\frac {x_{i}-\mu _{i}}{\sigma _{i}}}\right)^{-a},\qquad x_{i}>\mu _{i},\quad i=1,\dots ,k,\qquad (3)}

which has marginal distributions of the same type (3) and Pareto Type II univariate marginal distributions. This distribution is called a multivariate Pareto distribution of type II by Arnold.

For a > 1, the marginal means are

E [ X i ] = μ i + σ i a 1 , i = 1 , , k , {\displaystyle E=\mu _{i}+{\frac {\sigma _{i}}{a-1}},\qquad i=1,\dots ,k,}

while for a > 2, the variances, covariances, and correlations are the same as for multivariate Pareto of the first kind.

Multivariate Pareto distribution of the fourth kind

A random vector X has a k-dimensional multivariate Pareto distribution of the Fourth Kind if its joint survival function is

F ¯ ( x 1 , , x k ) = ( 1 + i = 1 k ( x i μ i σ i ) 1 / γ i ) a , x i > μ i , σ i > 0 , i = 1 , , k ; a > 0. ( 4 ) {\displaystyle {\overline {F}}(x_{1},\dots ,x_{k})=\left(1+\sum _{i=1}^{k}\left({\frac {x_{i}-\mu _{i}}{\sigma _{i}}}\right)^{1/\gamma _{i}}\right)^{-a},\qquad x_{i}>\mu _{i},\sigma _{i}>0,i=1,\dots ,k;a>0.\qquad (4)}

The k1-dimensional marginal distributions (k1<k) are of the same type as (4), and the one-dimensional marginal distributions are Pareto Type IV.

Multivariate Feller–Pareto distribution

A random vector X has a k-dimensional Feller–Pareto distribution if

X i = μ i + ( W i / Z ) γ i , i = 1 , , k , ( 5 ) {\displaystyle X_{i}=\mu _{i}+(W_{i}/Z)^{\gamma _{i}},\qquad i=1,\dots ,k,\qquad (5)}

where

W i Γ ( β i , 1 ) , i = 1 , , k , Z Γ ( α , 1 ) , {\displaystyle W_{i}\sim \Gamma (\beta _{i},1),\quad i=1,\dots ,k,\qquad Z\sim \Gamma (\alpha ,1),}

are independent gamma variables. The marginal distributions and conditional distributions are of the same type (5); that is, they are multivariate Feller–Pareto distributions. The one–dimensional marginal distributions are of Feller−Pareto type.

References

  1. S. Kotz; N. Balakrishnan; N. L. Johnson (2000). "52". Continuous Multivariate Distributions. Vol. 1 (second ed.). ISBN 0-471-18387-3.
  2. Barry C. Arnold (1983). Pareto Distributions. International Co-operative Publishing House. ISBN 0-89974-012-X. Chapter 3.
  3. ^ Mardia, K. V. (1962). "Multivariate Pareto distributions". Annals of Mathematical Statistics. 33 (3): 1008–1015. doi:10.1214/aoms/1177704468.
  4. ^ Barry C. Arnold (1983). Pareto Distributions. International Co-operative Publishing House. ISBN 0-89974-012-X. Chapter 6.
Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Category: