Misplaced Pages

25-NB

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from NBOMe) Family of serotonergic psychedelics
General structure of 25-NB derivatives, where R is usually 2,5-dimethoxy-4-(alkyl or halogen), R1 is usually H but rarely methyl, and Cyc is usually 2-substituted phenyl but can be other heterocycles.

The 25-NB (25x-NBx) series, or NBOMe series, also known as the N-benzylphenethylamines, is a family of serotonergic psychedelics. They are substituted phenethylamines and were derived from the 2C family. They act as selective agonists of the serotonin 5-HT2A receptor. The 25-NB family is unique relative to other classes of psychedelics in that they are, generally speaking, extremely potent and relatively selective for the 5-HT2A receptor. Use of NBOMe series drugs has caused many deaths and hospitalisations since the drugs popularisation in the 2010s. This is primarily due to their high potency, unpredictable pharmacokinetics, and sellers passing off the compounds in the series as LSD.

Toxicity and harm potential

NBOMe compounds are often associated with life-threatening toxicity and death. Studies on NBOMe family of compounds demonstrated that the substance exhibit neurotoxic and cardiotoxic activity. Reports of autonomic dysfunction remains prevalent with NBOMe compounds, with most individuals experiencing sympathomimetic toxicity such as vasoconstriction, hypertension and tachycardia in addition to hallucinations. Other symptoms of toxidrome include agitation or aggression, seizure, hyperthermia, diaphoresis, hypertonia, rhabdomyolysis, and death. Researchers report that NBOMe intoxication frequently display signs of serotonin syndrome. The likelihood of seizure is higher in NBOMes compared to other psychedelics.

NBOMe and NBOHs are regularly sold as LSD in blotter papers, which have a bitter taste and different safety profiles. Despite high potency, recreational doses of LSD have only produced low incidents of acute toxicity. Fatalities involved in NBOMe intoxication suggest that a significant number of individuals ingested the substance which they believed was LSD, and researchers report that "users familiar with LSD may have a false sense of security when ingesting NBOMe inadvertently". While most fatalities are due to the physical effects of the drug, there have also been reports of death due to self-harm and suicide under the influence of the substance.

Given limited documentation of NBOMe consumption, the long-term effects of the substance remain unknown. NBOMe compounds are not active orally, and are usually taken sublingually. When NBOMes are administered sublingually, numbness of the tongue and mouth followed by a metallic chemical taste was observed, and researchers describe this physical side effect as one of the main discriminants between NBOMe compounds and LSD.

Neurotoxic and cardiotoxic actions

Many of the NBOMe compounds have high potency agonist activity at additional 5-HT receptors and prolonged activation of 5-HT2B can cause cardiac valvulopathy in high doses and chronic use. 5-HT2B receptors have been strongly implicated in causing drug-induced valvular heart disease. The high affinity of NBOMe compounds for adrenergic α1 receptor has been reported to contribute to the stimulant-type cardiovascular effects.

In vitro studies, 25C-NBOMe has been shown to exhibit cytotoxicity on neuronal cell lines SH-SY5Y, PC12, and SN471, and the compound was more potent than methamphetamine at reducing the visibility of the respective cells; the neurotoxicity of the compound involves activation of MAPK/ERK cascade and inhibition of Akt/PKB signaling pathway. 25C-NBOMe, including the other derivative 25D-NBOMe, reduced the visibility of cardiomyocytes H9c2 cells, and both substances downregulated expression level of p21 (CDC24/RAC)-activated kinase 1 (PAK1), an enzyme with documented cardiac protective effects.

Preliminary studies on 25C-NBOMe have shown that the substance is toxic to development, heart health, and brain health in zebrafish, rats, and Artemia salina, a common organism for studying potential drug effects on humans, but more research is needed on the topic, the dosages, and if the toxicology results apply to humans. Researchers of the study also recommended further investigation of the drug's potential in damaging pregnant women and their fetus due to the substance's damaging effects to development.

Emergency treatment

At present, there are no specific antidotes for NBOMes, and all acute intoxication is managed by symptomatic treatments, such as administration of benzodiazepines, antipsychotic drugs, and antiarrhythmic agents, such as beta blockers; some emergency interventions are intended to specifically treat rhabdomyolysis, which may lead to critical complications such as metabolic acidosis and acute kidney injury.

Chemical structure

The 25-NB compounds are mostly N-benzylphenethylamines, though in some cases the phenyl ring of the N-benzyl group is replaced by other heterocycles such as thiophene, pyridine, furan, tetrahydrofuran, benzodioxole or naphthalene, among others.

Generally speaking, they have methoxy groups at the 2 and 5 positions of the phenyl ring, a substitution such as a halogen or alkyl group at the 4 position of the phenyl ring, and a methoxy or other substitution (e.g., hydroxyl, fluoro) at the 2 position of the N-benzyl ring. More rarely, other substitution patterns may be present (see e.g. NBOMe-mescaline, 25G-NBOMe, 2CBFly-NBOMe, 25C-NB3OMe). They differ from the 2C series by the presence of the N-benzyl moiety.

Rarely an alpha-methyl group is present making them N-benzyl amphetamines rather than N-benzyl phenethylamines, but this greatly reduces potency and activity. However in some cases where a side chain methyl group is cyclised back to the ring (e.g. in 2CBCB-NBOMe) or links the two alpha positions (e.g. in DMBMPP), this can improve selectivity for the 5-HT2A receptor subtype.

List of 25-NB derivatives

25I-NBOMe, the most well-known 25-NB derivative

This list includes notable compounds representative of most of the structural variations that have been explored in this series, but is by no means exhaustive. Many derivatives invented for scientific study into the structure-activity relationships of 5-HT2 receptor agonists have never appeared as designer drugs, while conversely some derivatives that have appeared as designer drugs are structurally novel and of unknown pharmacological activity (e.g. C30-NBOMe, 5-APB-NBOMe).

Chemical structure Common name Chemical name CAS number R R1 Cyc
25B-NB N-benzyl-1-(2,5-dimethoxy-4-bromophenyl)-2-aminoethane 155639-26-2 2,5-dimethoxy-4-bromo H phenyl
25C-NB N-benzyl-1-(2,5-dimethoxy-4-chlorophenyl)-2-aminoethane 1391487-65-2 2,5-dimethoxy-4-chloro H phenyl
25I-NB N-benzyl-1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 919797-18-5 2,5-dimethoxy-4-iodo H phenyl
25I-NMeTh N--1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 1391499-03-8 2,5-dimethoxy-4-iodo H thiophen-2-yl
25B-NMePyr N--1-(2,5-dimethoxy-4-bromophenyl)-2-aminoethane 1391499-21-0 2,5-dimethoxy-4-bromo H pyridin-2-yl
25I-NMeFur N--1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 1391498-93-3 2,5-dimethoxy-4-iodo H furan-2-yl
25I-NMeTHF N--1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 2,5-dimethoxy-4-iodo H tetrahydrofuran-2-yl
25B-NBF N-(2-fluorobenzyl)-1-(2,5-dimethoxy-4-bromophenyl)-2-aminoethane 1539266-17-5 2,5-dimethoxy-4-bromo H 2-fluorophenyl
25B-NBOH N-(2-hydroxybenzyl)-1-(2,5-dimethoxy-4-bromophenyl)-2-aminoethane 1335331-46-8 2,5-dimethoxy-4-bromo H 2-hydroxyphenyl
25B-NBOMe N-(2-methoxybenzyl)-1-(2,5-dimethoxy-4-bromophenyl)-2-aminoethane 1026511-90-9 2,5-dimethoxy-4-bromo H 2-methoxyphenyl
25B-NB23DM N-(2,3-dimethoxybenzyl)-1-(2,5-dimethoxy-4-bromophenyl)-2-aminoethane 1391493-68-7 2,5-dimethoxy-4-bromo H 2,3-dimethoxyphenyl
25B-NB25DM N-(2,5-dimethoxybenzyl)-1-(2,5-dimethoxy-4-bromophenyl)-2-aminoethane 2,5-dimethoxy-4-bromo H 2,5-dimethoxyphenyl
25B-NMe7BF N--1-(2,5-dimethoxy-4-bromophenyl)-2-aminoethane 1391492-46-8 2,5-dimethoxy-4-bromo H benzofuran-7-yl
25B-NMe7DHBF N--1-(2,5-dimethoxy-4-bromophenyl)-2-aminoethane 1391492-40-2 2,5-dimethoxy-4-bromo H 2,3-dihydrobenzofuran-7-yl
25B-NMe7BT N--1-(2,5-dimethoxy-4-bromophenyl)-2-aminoethane 1391492-59-3 2,5-dimethoxy-4-bromo H benzothiophen-7-yl
25B-NMe7Box N--1-(2,5-dimethoxy-4-bromophenyl)-2-aminoethane 1391498-73-9 2,5-dimethoxy-4-bromo H benzoxazol-7-yl
25B-NMe7Ind N--1-(2,5-dimethoxy-4-bromophenyl)-2-aminoethane 1391498-28-4 2,5-dimethoxy-4-bromo H indol-7-yl
25B-NMe7Indz N--1-(2,5-dimethoxy-4-bromophenyl)-2-aminoethane 1391498-43-3 2,5-dimethoxy-4-bromo H indazol-7-yl
25B-NMe7Bim N--1-(2,5-dimethoxy-4-bromophenyl)-2-aminoethane 1391498-62-6 2,5-dimethoxy-4-bromo H benzimidazol-7-yl
FECIMBI-36 N--1-(2,5-dimethoxy-4-bromophenyl)-2-aminoethane 2,5-dimethoxy-4-bromo H 2-(2-fluoroethoxy)phenyl
DOB-NBOMe N-(2-methoxybenzyl)-1-(2,5-dimethoxy-4-bromophenyl)-2-aminopropane 2,5-dimethoxy-4-bromo methyl 2-methoxyphenyl
25C-NB3OMe N-(3-methoxybenzyl)-1-(2,5-dimethoxy-4-chlorophenyl)-2-aminoethane 1566571-34-3 2,5-dimethoxy-4-chloro H 3-methoxyphenyl
25C-NB4OMe N-(4-methoxybenzyl)-1-(2,5-dimethoxy-4-chlorophenyl)-2-aminoethane 1566571-35-4 2,5-dimethoxy-4-chloro H 4-methoxyphenyl
C30-NBOMe N-(3,4,5-trimethoxybenzyl)-1-(2,5-dimethoxy-4-chlorophenyl)-2-aminoethane 1445574-98-0 2,5-dimethoxy-4-chloro H 3,4,5-trimethoxyphenyl
25C-NBF N-(2-fluorobenzyl)-1-(2,5-dimethoxy-4-chlorophenyl)-2-aminoethane 1539266-21-1 2,5-dimethoxy-4-chloro H 2-fluorophenyl
25C-NBCl N-(2-chlorobenzyl)-1-(2,5-dimethoxy-4-chlorophenyl)-2-aminoethane 2,5-dimethoxy-4-chloro H 2-chlorophenyl
25C-NBOH N-(2-hydroxybenzyl)-1-(2,5-dimethoxy-4-chlorophenyl)-2-aminoethane 1391488-16-6 2,5-dimethoxy-4-chloro H 2-hydroxyphenyl
25C-NBOMe N-(2-methoxybenzyl)-1-(2,5-dimethoxy-4-chlorophenyl)-2-aminoethane 1227608-02-7 2,5-dimethoxy-4-chloro H 2-methoxyphenyl
25C-NBOEt N-(2-ethoxybenzyl)-1-(2,5-dimethoxy-4-chlorophenyl)-2-aminoethane 2,5-dimethoxy-4-chloro H 2-ethoxyphenyl
25C-NBOiPr N-(2-isopropoxybenzyl)-1-(2,5-dimethoxy-4-chlorophenyl)-2-aminoethane 2,5-dimethoxy-4-chloro H 2-isopropoxyphenyl
25F-NBOMe N-(2-methoxybenzyl)-1-(2,5-dimethoxy-4-fluorophenyl)-2-aminoethane 1373917-84-0 2,5-dimethoxy-4-fluoro H 2-methoxyphenyl
25CN-NBOH N-(2-hydroxybenzyl)-1-(2,5-dimethoxy-4-cyanophenyl)-2-aminoethane 1539266-32-4 2,5-dimethoxy-4-cyano H 2-hydroxyphenyl
25CN-NBOMe N-(2-methoxybenzyl)-1-(2,5-dimethoxy-4-cyanophenyl)-2-aminoethane 1354632-16-8 2,5-dimethoxy-4-cyano H 2-methoxyphenyl
25D-NBOMe N-(2-methoxybenzyl)-1-(2,5-dimethoxy-4-methylphenyl)-2-aminoethane 1354632-02-2 2,5-dimethoxy-4-methyl H 2-methoxyphenyl
25D-NBOH N-(2-hydroxybenzyl)-1-(2,5-dimethoxy-4-methylphenyl)-2-aminoethane 1391488-44-0 2,5-dimethoxy-4-methyl H 2-hydroxyphenyl
25E-NBOMe N-(2-methoxybenzyl)-1-(2,5-dimethoxy-4-ethylphenyl)-2-aminoethane 1354632-14-6 2,5-dimethoxy-4-ethyl H 2-methoxyphenyl
25E-NBOH N-(2-hydroxybenzyl)-1-(2,5-dimethoxy-4-ethylphenyl)-2-aminoethane 1391489-79-4 2,5-dimethoxy-4-ethyl H 2-hydroxyphenyl
25G-NBOMe N-(2-methoxybenzyl)-1-(2,5-dimethoxy-3,4-dimethylphenyl)-2-aminoethane 1354632-65-7 2,5-dimethoxy-3,4-dimethyl H 2-methoxyphenyl
25H-NBOMe N-(2-methoxybenzyl)-1-(2,5-dimethoxyphenyl)-2-aminoethane 1566571-52-5 2,5-dimethoxy H 2-methoxyphenyl
25I-NB34MD N-(3,4-methylenedioxybenzyl)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 1391497-81-6 2,5-dimethoxy-4-iodo H 3,4-methylenedioxyphenyl
25I-NB3OMe N-(3-methoxybenzyl)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 1566571-40-1 2,5-dimethoxy-4-iodo H 3-methoxyphenyl
25I-NB4OMe N-(4-methoxybenzyl)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 1566571-41-2 2,5-dimethoxy-4-iodo H 4-methoxyphenyl
25I-NBF N-(2-fluorobenzyl)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 919797-21-0 2,5-dimethoxy-4-iodo H 2-fluorophenyl
25I-NBBr N-(2-bromobenzyl)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 1648649-98-2 2,5-dimethoxy-4-iodo H 2-bromophenyl
25I-NBTFM N--1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 2,5-dimethoxy-4-iodo H 2-(trifluoromethyl)phenyl
25I-NBMD N-(2,3-methylenedioxybenzyl)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 919797-25-4 2,5-dimethoxy-4-iodo H 2,3-methylenedioxyphenyl
25B-NBMD N-(2,3-methylenedioxybenzyl)-1-(2,5-dimethoxy-4-bromophenyl)-2-aminoethane 1354632-19-1 2,5-dimethoxy-4-bromo H 2,3-methylenedioxyphenyl
25C-NBMD N-(2,3-methylenedioxybenzyl)-1-(2,5-dimethoxy-4-chlorophenyl)-2-aminoethane 1373879-26-5 2,5-dimethoxy-4-chloro H 2,3-methylenedioxyphenyl
25D-NBMD N-(2,3-methylenedioxybenzyl)-1-(2,5-dimethoxy-4-methylphenyl)-2-aminoethane 1391488-97-3 2,5-dimethoxy-4-methyl H 2,3-methylenedioxyphenyl
25I-NBOH N-(2-hydroxybenzyl)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 919797-20-9 2,5-dimethoxy-4-iodo H 2-hydroxyphenyl
25I-NBOMe N-(2-methoxybenzyl)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 919797-19-6 2,5-dimethoxy-4-iodo H 2-methoxyphenyl
DOI-NBOMe N-(2-methoxybenzyl)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane 2,5-dimethoxy-4-iodo methyl 2-methoxyphenyl
25I-NBMeOH N--1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 1391494-71-5 2,5-dimethoxy-4-iodo H 2-(hydroxymethyl)phenyl
25I-NBAm N--1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 1391494-85-1 2,5-dimethoxy-4-iodo H 2-(carbamoyl)phenyl
25I-NMe7DHBF N--1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 2,5-dimethoxy-4-iodo H 2,3-dihydrobenzofuran-7-yl
25I-N2Nap1OH N--1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 2,5-dimethoxy-4-iodo H 1-hydroxynaphthalen-2-yl
25I-N3MT2M N--1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 1354632-66-8 2,5-dimethoxy-4-iodo H 3-methoxythiophen-2-yl
25I-N4MT3M N--1-(2,5-dimethoxy-4-iodophenyl)-2-aminoethane 1354632-73-7 2,5-dimethoxy-4-iodo H 4-methoxythiophen-3-yl
25iP-NBOMe N-(2-methoxybenzyl)-1-(2,5-dimethoxy-4-isopropylphenyl)-2-aminoethane 1391487-83-4 2,5-dimethoxy-4-isopropyl H 2-methoxyphenyl
25N-NBOMe N-(2-methoxybenzyl)-1-(2,5-dimethoxy-4-nitrophenyl)-2-aminoethane 1354632-03-3 2,5-dimethoxy-4-nitro H 2-methoxyphenyl
25N-NBOEt N-(2-ethoxybenzyl)-1-(2,5-dimethoxy-4-nitrophenyl)-2-aminoethane 2,5-dimethoxy-4-nitro H 2-ethoxyphenyl
25N-NB-2-OH-3-Me N-(2-hydroxy-3-methylbenzyl)-1-(2,5-dimethoxy-4-nitrophenyl)-2-aminoethane 2,5-dimethoxy-4-nitro H 2-hydroxy-3-methylphenyl
25N-NBOCF2H N-(2-difluoromethoxybenzyl)-1-(2,5-dimethoxy-4-nitrophenyl)-2-aminoethane 2,5-dimethoxy-4-nitro H 2-difluoromethoxyphenyl
25N-NBPh N--1-(2,5-dimethoxy-4-nitrophenyl)-2-aminoethane 2,5-dimethoxy-4-nitro H o-biphenyl
25N-N1-Nap N--1-(2,5-dimethoxy-4-nitrophenyl)-2-aminoethane 2,5-dimethoxy-4-nitro H 1-naphthyl
25P-NBOMe N-(2-methoxybenzyl)-1-(2,5-dimethoxy-4-propylphenyl)-2-aminoethane 1391489-07-8 2,5-dimethoxy-4-propyl H 2-methoxyphenyl
25P-NBOH N-(2-hydroxybenzyl)-1-(2,5-dimethoxy-4-propylphenyl)-2-aminoethane 1391490-34-8 2,5-dimethoxy-4-propyl H 2-hydroxyphenyl
25TFM-NBOMe N-(2-methoxybenzyl)-1--2-aminoethane 1027161-33-6 2,5-dimethoxy-4-(trifluoromethyl) H 2-methoxyphenyl
25O-NBcP N-(2-cyclopropylbenzyl)-1-(2,4,5-trimethoxyphenyl)-2-aminoethane 2,4,5-trimethoxy H 2-cyclopropylphenyl
25T-NBOMe N-(2-methoxybenzyl)-1--2-aminoethane 1539266-47-1 2,5-dimethoxy-4-(methylthio) H 2-methoxyphenyl
25T2-NBOMe N-(2-methoxybenzyl)-1--2-aminoethane 1539266-51-7 2,5-dimethoxy-4-(ethylthio) H 2-methoxyphenyl
25T4-NBOMe N-(2-methoxybenzyl)-1--2-aminoethane 1354632-17-9 2,5-dimethoxy-4-(isopropylthio) H 2-methoxyphenyl
25T7-NBOMe N-(2-methoxybenzyl)-1--2-aminoethane 1539266-55-1 2,5-dimethoxy-4-(propylthio) H 2-methoxyphenyl
25T7-NBOH N-(2-hydroxybenzyl)-1--2-aminoethane 1354632-41-9 2,5-dimethoxy-4-(propylthio) H 2-hydroxyphenyl
25AM-NBOMe N-(2-methoxybenzyl)-1--2-aminoethane 2,5-dimethoxy-4-(n-pentyl) H 2-methoxyphenyl
NBOMe-mescaline N-(2-methoxybenzyl)-1-(3,4,5-trimethoxyphenyl)-2-aminoethane 1354632-01-1 3,4,5-trimethoxy H 2-methoxyphenyl
NBOMe-escaline N-(2-methoxybenzyl)-1-(3,5-dimethoxy-4-ethoxyphenyl)-2-aminoethane 3,5-dimethoxy-4-ethoxy H 2-methoxyphenyl
NBOMe-thiobuscaline N-(2-methoxybenzyl)-1-(3,5-dimethoxy-4-butylthiophenyl)-2-aminoethane 3,5-dimethoxy-4-(n-butylthio) H 2-methoxyphenyl
MDPEA-NBOMe N-(2-methoxybenzyl)-1-(3,4-methylenedioxyphenyl)-2-aminoethane 3,4-methylenedioxy H 2-methoxyphenyl
2C2-NBOMe N-(2-methoxybenzyl)-1-(2-methoxy-4,5-methylenedioxyphenyl)-2-aminoethane 2-methoxy-4,5-methylenedioxy H 2-methoxyphenyl
MDBZ N-benzyl-1-(3,4-methylenedioxyphenyl)-2-aminopropane 65033-29-6 3,4-methylenedioxy methyl phenyl
Clobenzorex N-(2-chlorobenzyl)-1-phenyl-2-aminopropane 13364-32-4 H methyl 2-chlorophenyl
4-EA-NBOMe N-(2-methoxybenzyl)-1-(4-ethylphenyl)-2-aminopropane 4-ethyl methyl 2-methoxyphenyl
5-APB-NBOMe N-(2-methoxybenzyl)-1-(benzofuran-5-yl)-2-aminopropane benzofuran-5-yl instead of phenyl methyl 2-methoxyphenyl

Related compounds

Similar compounds with related structures are also known including;

Chemical structure Common name Chemical name CAS number
25B-N1POMe N--2,5-dimethoxy-4-bromophenethylamine 1335331-49-1 (R)
1335331-51-5 (S)
2C-B-AN 2-phenyl-2-acetonitrile
25B-N(BOMe)2 2-(4-Bromo-2,5-dimethoxyphenyl)-N,N-bis(2-methoxybenzyl)ethan-1-amine
25CN-N3DHBF 4-(2-ethyl)-2,5-dimethoxybenzonitrile
2CBCB-NBOMe N-octa-1,3,5-trien-7-yl)methyl]-1-(2-methoxyphenyl)methanamine 1354634-09-5
2CBFly-NBOMe N-(2-methoxybenzyl)-1-(8-bromo-2,3,6,7-tetrahydrobenzodifuran-4-yl)-2-aminoethane 1335331-42-4
2C-B-DRAGONFLY-NBOH N-(2-hydroxybenzyl)-1-(8-bromobenzodifuran-4-yl)-2-aminoethane 1335331-45-7
2C-B-FLY-NB2EtO5Cl N-(2-ethoxy-5-chlorobenzyl)-1-(8-bromo-2,3,6,7-tetrahydrobenzodifuran-4-yl)-2-aminoethane
DMBMPP (S,S)-2-(2,5-dimethoxy-4-bromobenzyl)-6-(2-methoxyphenyl)piperidine 1391499-52-7
25B-NAcPip 2-{amino}-1-(piperidin-1-yl)ethanone
ZDCM-04 1,3-dimethyl-7-{2-ethyl}purine-2,6-dione
RH-34 3--1H-quinazoline-2,4-dione 1028307-48-3
5-MeO-T-NBOMe N-(2-methoxybenzyl)-5-methoxytryptamine 1335331-37-7
5MT-NB3OMe N-(3-methoxybenzyl)-5-methoxytryptamine 1648553-42-7

Legality

United Kingdom

A large number of substances in the 25-NB class are Class A drugs in the United Kingdom as a result of the N-benzylphenethylamine catch-all clause in the Misuse of Drugs Act 1971 or are otherwise covered by the Psychoactive Substances Act 2016.

See also

Notes

  1. The potency of N-benzylphenethylamines via buccal, sublingual, or nasal absorption is 50-100 greater (by weight) than oral route compared to the parent 2C-x compounds. Researchers hypothesize the low oral metabolic stability of N-benzylphenethylamines is likely causing the low bioavailability on the oral route, although the metabolic profile of this compounds remains unpredictable; therefore researchers state that the fatalities linked to these substances may partly be explained by differences in the metabolism between individuals.

External links

References

  1. ^ Poulie CB, Jensen AA, Halberstadt AL, Kristensen JL (December 2020). "DARK Classics in Chemical Neuroscience: NBOMes". ACS Chemical Neuroscience. 11 (23): 3860–3869. doi:10.1021/acschemneuro.9b00528. PMC 9191638. PMID 31657895. S2CID 204952449.
  2. ^ Adam H (18 January 2017). "Pharmacology and Toxicology of N-Benzylphenethylamine ("NBOMe") Hallucinogens". Neuropharmacology of New Psychoactive Substances. Current Topics in Behavioral Neurosciences. Vol. 32. Springer. pp. 283–311. doi:10.1007/7854_2016_64. ISBN 978-3-319-52444-3. PMID 28097528.
  3. Pertz HH, Rheineck A, Elz S (1999-01-01). "N-Benzylated derivatives of the hallucinogenic drugs mescaline and escaline as partial agonists at rat vascular 5-HT2A receptors". Naunyn-Schmiedeberg's Archives of Pharmacology. 359: R29. Archived from the original on September 25, 2015.
  4. Heim R (February 28, 2010). Synthese und Pharmakologie potenter 5-HT2A-Rezeptoragonisten mit N-2-Methoxybenzyl-Partialstruktur. Entwicklung eines neuen Struktur-Wirkungskonzepts (Thesis) (in German). Berlin: Freie Univ. Retrieved 2013-05-10.
  5. Silva M (2009). Theoretical study of the interaction of agonists with the 5-HT2A receptor (Ph.D. thesis). Universität Regensburg.
  6. Hansen M (2011). Design and Synthesis of Selective Serotonin Receptor Agonists for Positron Emission Tomography Imaging of the Brain (Ph.D. thesis). University of Copenhagen.
  7. Silva ME, Heim R, Strasser A, Elz S, Dove S (January 2011). "Theoretical studies on the interaction of partial agonists with the 5-HT2A receptor". Journal of Computer-Aided Molecular Design. 25 (1): 51–66. Bibcode:2011JCAMD..25...51S. CiteSeerX 10.1.1.688.2670. doi:10.1007/s10822-010-9400-2. PMID 21088982. S2CID 3103050.
  8. Rickli A, Luethi D, Reinisch J, Buchy D, Hoener MC, Liechti ME (December 2015). "Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs)" (PDF). Neuropharmacology. 99: 546–553. doi:10.1016/j.neuropharm.2015.08.034. PMID 26318099. S2CID 10382311.
  9. Hansen M, Phonekeo K, Paine JS, Leth-Petersen S, Begtrup M, Bräuner-Osborne H, Kristensen JL (March 2014). "Synthesis and structure-activity relationships of N-benzyl phenethylamines as 5-HT2A/2C agonists". ACS Chemical Neuroscience. 5 (3): 243–249. doi:10.1021/cn400216u. PMC 3963123. PMID 24397362.
  10. Lipow M, Kaleem SZ, Espiridion E (2022-03-30). "NBOMe Toxicity and Fatalities: A Review of the Literature". Transformative Medicine. 1 (1): 12–18. doi:10.54299/tmed/msot8578. ISSN 2831-8978. S2CID 247888583.
  11. ^ Sean I, Joe R, Jennifer S, and Shaun G (28 March 2022). "A cluster of 25B-NBOH poisonings following exposure to powder sold as lysergic acid diethylamide (LSD)". Clinical Toxicology. 60 (8): 966–969. doi:10.1080/15563650.2022.2053150. PMID 35343858. S2CID 247764056.
  12. ^ Amy E, Katherine W, John R, Sonyoung K, Robert J, Aaron J (December 2018). "Neurochemical pharmacology of psychoactive substituted N-benzylphenethylamines: High potency agonists at 5-HT2A receptors". Biochemical Pharmacology. 158: 27–34. doi:10.1016/j.bcp.2018.09.024. PMC 6298744. PMID 30261175.
  13. ^ Jolanta Z, Monika K, and Piotr A (26 February 2020). "NBOMes–Highly Potent and Toxic Alternatives of LSD". Frontiers in Neuroscience. 14: 78. doi:10.3389/fnins.2020.00078. PMC 7054380. PMID 32174803.
  14. ^ Lipow M, Kaleem SZ, Espiridion E (30 March 2022). "NBOMe Toxicity and Fatalities: A Review of the Literature". Transformative Medicine. 1 (1): 12–18. doi:10.54299/tmed/msot8578. ISSN 2831-8978. S2CID 247888583.
  15. Micaela T, Sabrine B, Raffaella A, Giorgia C, Beatrice M, Tatiana B, Federica B, Giovanni S, Francesco B, Fabio G, Krystyna G, Matteo M (21 April 2022). "Effect of -NBOMe Compounds on Sensorimotor, Motor, and Prepulse Inhibition Responses in Mice in Comparison With the 2C Analogs and Lysergic Acid Diethylamide: From Preclinical Evidence to Forensic Implication in Driving Under the Influence of Drugs". Front Psychiatry. 13: 875722. doi:10.3389/fpsyt.2022.875722. PMC 9069068. PMID 35530025.
  16. ^ Cristina M, Matteo M, Nicholas P, Maria C, Micaela T, Raffaella A, Maria L (12 December 2019). "Neurochemical and Behavioral Profiling in Male and Female Rats of the Psychedelic Agent 25I-NBOMe". Frontiers in Pharmacology. 10: 1406. doi:10.3389/fphar.2019.01406. PMC 6921684. PMID 31915427.
  17. ^ Anna R, Dino L, Julia R, Daniele B, Marius H, Matthias L (December 2015). "Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs)". Neuropharmacology. 99: 546–553. doi:10.1016/j.neuropharm.2015.08.034. ISSN 1873-7064. PMID 26318099. S2CID 10382311.
  18. ^ David W, Roumen S, Andrew C, Paul D (6 February 2015). "Prevalence of use and acute toxicity associated with the use of NBOMe drugs". Clinical Toxicology. 53 (2): 85–92. doi:10.3109/15563650.2015.1004179. PMID 25658166. S2CID 25752763.
  19. Humston C, Miketic R, Moon K, Ma P, Tobias J (2017-06-05). "Toxic Leukoencephalopathy in a Teenager Caused by the Recreational Ingestion of 25I-NBOMe: A Case Report and Review of Literature". Journal of Medical Cases. 8 (6): 174–179. doi:10.14740/jmc2811w. ISSN 1923-4163.
  20. Justin P, Stephen R, Kylin A, Alphonse P, Michelle P (2015). "Analysis of 25I-NBOMe, 25B-NBOMe, 25C-NBOMe and Other Dimethoxyphenyl-N-[(2-Methoxyphenyl) Methyl]Ethanamine Derivatives on Blotter Paper". Journal of Analytical Toxicology. 39 (8): 617–623. doi:10.1093/jat/bkv073. PMC 4570937. PMID 26378135.
  21. Morini L, Bernini M, Vezzoli S, Restori M, Moretti M, Crenna S, et al. (October 2017). "Death after 25C-NBOMe and 25H-NBOMe consumption". Forensic Science International. 279: e1–e6. doi:10.1016/j.forsciint.2017.08.028. PMID 28893436.
  22. Byard RW, Cox M, Stockham P (November 2016). "Blunt Craniofacial Trauma as a Manifestation of Excited Delirium Caused by New Psychoactive Substances". Journal of Forensic Sciences. 61 (6): 1546–1548. doi:10.1111/1556-4029.13212. PMID 27723094. S2CID 4734566.
  23. ^ Sabastian LP, Christoffer B, Martin H, Martin AC, Jan K, Jesper LK (14 February 2014). "Correlating the Metabolic Stability of Psychedelic 5-HT2A Agonists with Anecdotal Reports of Human Oral Bioavailability". Neurochemical Research. 39 (10): 2018–2023. doi:10.1007/s11064-014-1253-y. PMID 24519542. S2CID 254857910.
  24. Boris D, Cristian C, Marcelo K, Edwar F, Bruce KC (August 2016). "Analysis of 25 C NBOMe in Seized Blotters by HPTLC and GC–MS". Journal of Chromatographic Science. 54 (7): 1153–1158. doi:10.1093/chromsci/bmw095. PMC 4941995. PMID 27406128.
  25. Francesco SB, Ornella C, Gabriella A, Giuseppe V, Rita S, Flaminia BP, Eduardo C, Pierluigi S, Giovanni M, Guiseppe B, Fabrizio S (3 July 2014). "25C-NBOMe: preliminary data on pharmacology, psychoactive effects, and toxicity of a new potent and dangerous hallucinogenic drug". BioMed Research International. 2014: 734749. doi:10.1155/2014/734749. PMC 4106087. PMID 25105138.
  26. Adam JP, Simon HT, Simon LH (September 2021). "Pharmacology and toxicology of N-Benzyl-phenylethylamines (25X-NBOMe) hallucinogens". Novel Psychoactive Substances: Classification, Pharmacology and Toxicology (2 ed.). Academic Press. pp. 279–300. doi:10.1016/B978-0-12-818788-3.00008-5. ISBN 978-0-12-818788-3. S2CID 240583877.
  27. Rothman RB, Baumann MH, Savage JE, Rauser L, McBride A, Hufeisen SJ, Roth BL (Dec 2000). "Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications". Circulation. 102 (23): 2836–41. doi:10.1161/01.CIR.102.23.2836. PMID 11104741.
  28. Fitzgerald LW, Burn TC, Brown BS, Patterson JP, Corjay MH, Valentine PA, Sun JH, Link JR, Abbaszade I, Hollis JM, Largent BL, Hartig PR, Hollis GF, Meunier PC, Robichaud AJ, Robertson DW (Jan 2000). "Possible role of valvular serotonin 5-HT(2B) receptors in the cardiopathy associated with fenfluramine". Molecular Pharmacology. 57 (1): 75–81. PMID 10617681.
  29. Roth BL (Jan 2007). "Drugs and valvular heart disease". The New England Journal of Medicine. 356 (1): 6–9. doi:10.1056/NEJMp068265. PMID 17202450.
  30. Xu P, Qiu Q, Li H, Yan S, Yang M, Naman CB, et al. (26 February 2019). "25C-NBOMe, a Novel Designer Psychedelic, Induces Neurotoxicity 50 Times More Potent Than Methamphetamine In Vitro". Neurotoxicity Research. 35 (4): 993–998. doi:10.1007/s12640-019-0012-x. PMID 30806983. S2CID 255763701.
  31. Álvarez-Alarcón N, Osorio-Méndez JJ, Ayala-Fajardo A, Garzón-Méndez WF, Garavito-Aguilar ZV (2021). "Zebrafish and Artemia salina in vivo evaluation of the recreational 25C-NBOMe drug demonstrates its high toxicity". Toxicology Reports. 8: 315–323. doi:10.1016/j.toxrep.2021.01.010. ISSN 2214-7500. PMC 7868744. PMID 33598409.
  32. Michael Robert Braden (2007). "Towards a biophysical understanding of hallucinogen action". Dissertation: 1–176.
  33. Nichols DE (2012). "Structure-activity relationships of serotonin 5-HT2A agonists". Wiley Interdisciplinary Reviews: Membrane Transport and Signaling. 1 (5): 559–579. doi:10.1002/wmts.42.
  34. Leth-Petersen S, Petersen IN, Jensen AA, Bundgaard C, Bæk M, Kehler J, Kristensen JL (November 2016). "5-HT2A/5-HT2C Receptor Pharmacology and Intrinsic Clearance of N-Benzylphenethylamines Modified at the Primary Site of Metabolism". ACS Chemical Neuroscience. 7 (11): 1614–1619. doi:10.1021/acschemneuro.6b00265. PMID 27564969.
  35. Prabhakaran J, Solingapuram Sai KK, Zanderigo F, Rubin-Falcone H, Jorgensen MJ, Kaplan JR, et al. (January 2017). "In vivo evaluation of [F]FECIMBI-36, an agonist 5-HT2A/2C receptor PET radioligand in nonhuman primate". Bioorganic & Medicinal Chemistry Letters. 27 (1): 21–23. doi:10.1016/j.bmcl.2016.11.043. PMC 5348621. PMID 27889455.
  36. Juncosa JI, Hansen M, Bonner LA, Cueva JP, Maglathlin R, McCorvy JD, Marona-Lewicka D, Lill MA, Nichols DE (January 2013). "Extensive rigid analogue design maps the binding conformation of potent N-benzylphenethylamine 5-HT2A serotonin receptor agonist ligands". ACS Chemical Neuroscience. 4 (1): 96–109. doi:10.1021/cn3000668. PMC 3547484. PMID 23336049.
  37. Wallach J, et al. Selective, Partial and Arrestin-Biased 5-HT2A Agonists with Utility in Various Disorders. Patent WO 2022/241006
  38. Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, Hennessey JJ, Bock HA, Anderson EI, Sherwood AM, Morris H, de Klein R, Klein AK, Cuccurazzu B, Gamrat J, Fannana T, Zauhar R, Halberstadt AL, McCorvy JD. Identification of 5-HT2A Receptor Signaling Pathways Responsible for Psychedelic Potential. bioRxiv 2023 Jul 31:2023.07.29.551106. doi:10.1101/2023.07.29.551106 PMID 37577474
  39. Kruegel AC. Phenalkylamines and Methods of Making and Using the Same. Patent WO 2022/192781
  40. Trachsel D, Lehmann D, Enzensperger C (2013). Phenethylamine Von der Struktur zur Funktion. Nachtschatten Verlag AG. p. 843. ISBN 978-3-03788-700-4.
  41. Elliott SP, Holdbrook T, Brandt SD (May 2020). "Prodrugs of New Psychoactive Substances (NPS): A New Challenge" (PDF). Journal of Forensic Sciences. 65 (3): 913–920. doi:10.1111/1556-4029.14268. PMID 31943218. S2CID 210335207.
  42. Bolinger AA, et al. The Serotonin 5-HT2A Receptor as an Evolving Neurotherapeutic Target. Medicinal Chemistry Reviews 2023; 58(3): 53-81. doi:10.1021/mc-2023-vol58.ch03
  43. Richter LH, Menges J, Wagmann L, Brandt SD, Stratford A, Westphal F, et al. (2020). "In vitro toxicokinetics and analytical toxicology of three novel NBOMe derivatives: Phase I and II metabolism, plasma protein binding, and detectability in standard urine screening approaches studied by means of hyphenated mass spectrometry" (PDF). Forensic Toxicology. 38: 141–159. doi:10.1007/s11419-019-00498-7. S2CID 202879918.
  44. Nichols DE, Sassano MF, Halberstadt AL, Klein LM, Brandt SD, Elliott SP, Fiedler WJ (July 2015). "N-Benzyl-5-methoxytryptamines as Potent Serotonin 5-HT2 Receptor Family Agonists and Comparison with a Series of Phenethylamine Analogues". ACS Chemical Neuroscience. 6 (7): 1165–1175. doi:10.1021/cn500292d. PMC 4505863. PMID 25547199.
  45. "The Misuse of Drugs Act 1971 (Ketamine etc.) (Amendment) Order 2014". www.legislation.gov.uk.
  46. "Psychoactive Substances Act 2016". www.legislation.gov.uk.
Hallucinogens
Psychedelics
(5-HT2A
agonists)
Benzofurans
Lyserg‐
amides
Phenethyl‐
amines
2C-x
25x-NBx
25x-NB
25x-NB3OMe
25x-NB4OMe
25x-NBF
25x-NBMD
25x-NBOH
25x-NBOMe
Atypical structures
25x-NMx
N-(2C)-fentanyl
3C-x
4C-x
DOx
HOT-x
MDxx
Mescaline (subst.)
TMAs
  • TMA
  • TMA-2
  • TMA-3
  • TMA-4
  • TMA-5
  • TMA-6
Others
Piperazines
Tryptamines
alpha-alkyltryptamines
x-DALT
x-DET
x-DiPT
x-DMT
x-DPT
Ibogaine-related
x-MET
x-MiPT
Others
Others
Dissociatives
(NMDAR
antagonists)
Arylcyclo‐
hexylamines
Ketamine-related
PCP-related
Others
Adamantanes
Diarylethylamines
Morphinans
Others
Deliriants
(mAChR
antagonists)
Others
Cannabinoids
(CB1 agonists)
Natural
Synthetic
AM-x
CP x
HU-x
JWH-x
Misc. designer cannabinoids
D2 agonists
GABAA
enhancers
Inhalants
(Mixed MOA)
κOR agonists
Oneirogens
Others
Serotonin receptor modulators
5-HT1
5-HT1A
5-HT1B
5-HT1D
5-HT1E
5-HT1F
5-HT2
5-HT2A
5-HT2B
5-HT2C
5-HT37
5-HT3
5-HT4
5-HT5A
5-HT6
5-HT7
Phenethylamines
Phenethylamines
Amphetamines
Phentermines
Cathinones
Phenylisobutylamines
Phenylalkylpyrrolidines
Catecholamines
(and close relatives)
Miscellaneous
Categories: