Misplaced Pages

Nemytskii operator

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, Nemytskii operators are a class of nonlinear operators on L spaces with good continuity and boundedness properties. They take their name from the mathematician Viktor Vladimirovich Nemytskii.

General definition of Superposition operator

Let X ,   Y ,   Z {\textstyle \mathbb {X} ,\ \mathbb {Y} ,\ \mathbb {Z} \neq \varnothing } be non-empty sets, then Y X ,   Z X {\textstyle \mathbb {Y} ^{\mathbb {X} },\ \mathbb {Z} ^{\mathbb {X} }} — sets of mappings from X {\textstyle \mathbb {X} } with values in Y {\textstyle \mathbb {Y} } and Z {\textstyle \mathbb {Z} } respectively. The Nemytskii superposition operator H   : Y X Z X {\textstyle H\ \colon \mathbb {Y} ^{\mathbb {X} }\to \mathbb {Z} ^{\mathbb {X} }} is the mapping induced by the function h   : X × Y Z {\textstyle h\ \colon \mathbb {X} \times \mathbb {Y} \to \mathbb {Z} } , and such that for any function φ Y X {\textstyle \varphi \in \mathbb {Y} ^{\mathbb {X} }} its image is given by the rule ( H φ ) ( x ) = h ( x , φ ( x ) ) Z , for all   x X . {\displaystyle (H\varphi )(x)=h(x,\varphi (x))\in \mathbb {Z} ,\quad {\mbox{for all}}\ x\in \mathbb {X} .} The function h {\textstyle h} is called the generator of the Nemytskii operator H {\textstyle H} .

Definition of Nemytskii operator

Let Ω be a domain (an open and connected set) in n-dimensional Euclidean space. A function f : Ω × R → R is said to satisfy the Carathéodory conditions if

Given a function f satisfying the Carathéodory conditions and a function u : Ω → R, define a new function F(u) : Ω → R by

F ( u ) ( x ) = f ( x , u ( x ) ) . {\displaystyle F(u)(x)=f{\big (}x,u(x){\big )}.}

The function F is called a Nemytskii operator.

Theorem on Lipschitzian Operators

Suppose that h : [ a , b ] × R R {\textstyle h:\times \mathbb {R} \to \mathbb {R} } , X = Lip [ a , b ] {\textstyle X={\text{Lip}}} and

H : Lip [ a , b ] Lip [ a , b ] {\displaystyle H:{\text{Lip}}\to {\text{Lip}}}

where operator H {\textstyle H} is defined as ( H f ) ( x ) {\textstyle \left(Hf\right)\left(x\right)} = h ( x , f ( x ) ) {\textstyle =h(x,f(x))} for any function f : [ a , b ] R {\textstyle f:\to \mathbb {R} } and any x [ a , b ] {\textstyle x\in } . Under these conditions the operator H {\textstyle H} is Lipschitz continuous if and only if there exist functions G , H Lip [ a , b ] {\textstyle G,H\in {\text{Lip}}} such that

h ( x , y ) = G ( x ) y + H ( x ) , x [ a , b ] , y R . {\displaystyle h(x,y)=G(x)y+H(x),\quad x\in ,\quad y\in \mathbb {R} .}

Boundedness theorem

Let Ω be a domain, let 1 < p < +∞ and let g ∈ L(Ω; R), with

1 p + 1 q = 1. {\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1.}

Suppose that f satisfies the Carathéodory conditions and that, for some constant C and all x and u,

| f ( x , u ) | C | u | p 1 + g ( x ) . {\displaystyle {\big |}f(x,u){\big |}\leq C|u|^{p-1}+g(x).}

Then the Nemytskii operator F as defined above is a bounded and continuous map from L(Ω; R) into L(Ω; R).

References

  • Renardy, Michael & Rogers, Robert C. (2004). An introduction to partial differential equations. Texts in Applied Mathematics 13 (Second ed.). New York: Springer-Verlag. p. 370. ISBN 0-387-00444-0. (Section 10.3.4)
  • Matkowski, J. (1982). "Functional equations and Nemytskii operators". Funkcial. Ekvac. 25 (2): 127–132.
Category: