Nikolai Andreevich Lebedev (Russian: Никола́й Андре́евич Ле́бедев; August 8, 1919 – January 8, 1982) was a Soviet mathematician who worked on complex function theory and geometric function theory. Jointly with Isaak Milin, he proved the Lebedev–Milin inequalities that were used in the proof of the Bieberbach conjecture.
See also
Biographical references
- Aleksandrov, I. A.; Bazilevich, I. E.; Kuz'min, G. V.; Lozinskii, S. M.; Tamrazov, P. M.; Shirokov, N. A. (1983), "Николай Андреевич Лебедев (некролог)", Uspekhi Matematicheskikh Nauk, 38 (2(230)): 195–199, MR 0695474, Zbl 0515.01018, translated in English as "Nikolai Andreevich Lebedev (obituary)", Russian Mathematical Surveys, 38 (2): 177–182, 1983, Bibcode:1983RuMaS..38..177A, doi:10.1070/RM1983v038n02ABEH003472, MR 0695474, Zbl 0528.01020.
- Goluzina, E. G.; Zhuk, V. V.; Kuzmina, G. V.; Shirokov, N. A. (2001), "Николай Андреевич Лебедев и Ленинградская школа теории функций (50–70 гг.)", Zapiski Nauchnykh Seminarov POMI, 276: 5–19, MR 1850360, Zbl 1077.01525, translated in English as "Nikolai Andreevich Lebedev and the Leningrad School of Function Theory in the 50s–70s", Journal of Mathematical Sciences, 118 (1): 4733–4739, 2003, doi:10.1023/A:1025562313596, MR 1850360, S2CID 117992735, Zbl 1077.01525.
References
- Grinshpan, Arcadii Z. (2002), "Logarithmic Geometry, Exponentiation, and Coefficient Bounds in the Theory of Univalent Functions and Nonoverlapping Domains", in Kuhnau, Reiner (ed.), Geometric Function Theory, Handbook of Complex Analysis, vol. 1, Amsterdam: North-Holland, pp. 273–332, ISBN 978-0-444-82845-3, MR 1966197, Zbl 1083.30017.
- Hayman, W. K. (1994) , Multivalent functions, Cambridge Tracts on Mathematics, vol. 110 (Second ed.), Cambridge: Cambridge University Press, pp. xii+263, ISBN 978-0-521-46026-2, MR 1310776, Zbl 0904.30001.
- Kuhnau, Reiner, ed. (2002), Geometric Function Theory, Handbook of Complex Analysis, vol. 1, Amsterdam: North-Holland, pp. xii+536, ISBN 978-0-444-82845-3, MR 1966187, Zbl 1057.30001.
- Milin, I. M. (1977) , Univalent functions and orthonormal systems, Translations of Mathematical Monographs, vol. 49, Providence, R.I.: American Mathematical Society, pp. iv+202, ISBN 978-0-8218-1599-1, MR 0369684, Zbl 0342.30006 (Translation of the 1971 Russian edition, edited by P. L. Duren).