Misplaced Pages

Nuclear magnetic resonance database method

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The nuclear magnetic resonance database method enables the identification of the stereochemistry of chiral molecules, especially polyols. It relies on the observation that NMR spectroscopy data depend only on the immediate environment near an asymmetric carbon, not on the entire molecular structure. All stereoisomers of a certain class of compounds are synthesized, and their proton NMR and carbon-13 NMR chemical shifts and coupling constants are compared. Yoshito Kishi's group at Harvard University has reported NMR databases for 1,3,5-triols 1,2,3-triols, 1,2,3,4-tetraols, and 1,2,3,4,5-pentaols.

The stereochemistry of any 1,2,3-triol may be determined by comparing it with the database, even if the remainder of the unknown molecule is different from the database template compounds.

References

  1. Kobayashi, Y.; Tan, C.-H.; Kishi, Y. "Toward Creation of a Universal NMR Database for Stereochemical Assignment: The Case of 1,3,5-Trisubstituted Acyclic Systems" Helv. Chim. Acta 2000, 83, 2562-2571.
  2. S. Higabayashi, W. Czechtizky, Y. Kobayashi, and Y. Kishi. "Universal NMR Databases for Contiguous Polyols." J. Am. Chem. Soc. 2003, 125, 14379-14393.


Stub icon

This spectroscopy-related article is a stub. You can help Misplaced Pages by expanding it.

Stub icon

This nuclear magnetic resonance–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: