This article includes inline citations, but they are not properly formatted. Please improve this article by correcting them. (May 2024) (Learn how and when to remove this message) |
In mathematics, a nullform of a vector space acted on linearly by a group is a vector on which all invariants of the group vanish. Nullforms were introduced by Hilbert (1893). (Dieudonné & Carrell 1970, 1971, p.57).
References
- Dieudonné, Jean A.; Carrell, James B. (1970), "Invariant theory, old and new", Advances in Mathematics, 4: 1–80, doi:10.1016/0001-8708(70)90015-0, ISSN 0001-8708, MR 0255525
- Dieudonné, Jean A.; Carrell, James B. (1971), Invariant theory, old and new, Boston, MA: Academic Press, doi:10.1016/0001-8708(70)90015-0, ISBN 978-0-12-215540-6, MR 0279102
- Hilbert, David (1893), "Ueber die vollen Invariantensysteme", Mathematische Annalen, 42 (3), Springer Berlin / Heidelberg: 313–373, doi:10.1007/BF01444162, ISSN 0025-5831
This algebra-related article is a stub. You can help Misplaced Pages by expanding it. |