Tetrapentagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | (4.5) |
Schläfli symbol | r{5,4} or rr{5,5} or |
Wythoff symbol | 2 | 5 4 5 5 | 2 |
Coxeter diagram | or or |
Symmetry group | , (*542) , (*552) |
Dual | Order-5-4 rhombille tiling |
Properties | Vertex-transitive edge-transitive |
In geometry, the tetrapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t1{4,5} or r{4,5}.
Symmetry
A half symmetry = construction exists, which can be seen as two colors of pentagons. This coloring can be called a rhombipentapentagonal tiling.
Dual tiling
The dual tiling is made of rhombic faces and has a face configuration V4.5.4.5:
Related polyhedra and tiling
Uniform pentagonal/square tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: , (*542) | , (542) | , (5*2) | , (*552) | ||||||||
{5,4} | t{5,4} | r{5,4} | 2t{5,4}=t{4,5} | 2r{5,4}={4,5} | rr{5,4} | tr{5,4} | sr{5,4} | s{5,4} | h{4,5} | ||
Uniform duals | |||||||||||
V5 | V4.10.10 | V4.5.4.5 | V5.8.8 | V4 | V4.4.5.4 | V4.8.10 | V3.3.4.3.5 | V3.3.5.3.5 | V5 |
Uniform pentapentagonal tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: , (*552) | , (552) | ||||||||||
= |
= |
= |
= |
= |
= |
= |
= | ||||
Order-5 pentagonal tiling {5,5} |
Truncated order-5 pentagonal tiling t{5,5} |
Order-4 pentagonal tiling r{5,5} |
Truncated order-5 pentagonal tiling 2t{5,5} = t{5,5} |
Order-5 pentagonal tiling 2r{5,5} = {5,5} |
Tetrapentagonal tiling rr{5,5} |
Truncated order-4 pentagonal tiling tr{5,5} |
Snub pentapentagonal tiling sr{5,5} | ||||
Uniform duals | |||||||||||
Order-5 pentagonal tiling V5.5.5.5.5 |
V5.10.10 | Order-5 square tiling V5.5.5.5 |
V5.10.10 | Order-5 pentagonal tiling V5.5.5.5.5 |
V4.5.4.5 | V4.10.10 | V3.3.5.3.5 |
*n42 symmetry mutations of quasiregular tilings: (4.n) | ||||||||
---|---|---|---|---|---|---|---|---|
Symmetry *4n2 |
Spherical | Euclidean | Compact hyperbolic | Paracompact | Noncompact | |||
*342 |
*442 |
*542 |
*642 |
*742 |
*842 ... |
*∞42 |
| |
Figures | ||||||||
Config. | (4.3) | (4.4) | (4.5) | (4.6) | (4.7) | (4.8) | (4.∞) | (4.ni) |
*5n2 symmetry mutations of quasiregular tilings: (5.n) | ||||||||
---|---|---|---|---|---|---|---|---|
Symmetry *5n2 |
Spherical | Hyperbolic | Paracompact | Noncompact | ||||
*352 |
*452 |
*552 |
*652 |
*752 |
*852 ... |
*∞52 |
| |
Figures | ||||||||
Config. | (5.3) | (5.4) | (5.5) | (5.6) | (5.7) | (5.8) | (5.∞) | (5.ni) |
Rhombic figures |
||||||||
Config. | V(5.3) | V(5.4) | V(5.5) | V(5.6) | V(5.7) | V(5.8) | V(5.∞) | V(5.∞) |
See also
- Binary tiling, an aperiodic tiling of the hyperbolic plane by pentagons
- Uniform tilings in hyperbolic plane
- List of regular polytopes
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
- Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
- Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
Tessellation | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||
| |||||||||||||
| |||||||||||||
|
This hyperbolic geometry-related article is a stub. You can help Misplaced Pages by expanding it. |