Misplaced Pages

Tetrapentagonal tiling

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Order-5-4 rhombille tiling)
Tetrapentagonal tiling
Tetrapentagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration (4.5)
Schläfli symbol r{5,4} or { 5 4 } {\displaystyle {\begin{Bmatrix}5\\4\end{Bmatrix}}}
rr{5,5} or r { 5 5 } {\displaystyle r{\begin{Bmatrix}5\\5\end{Bmatrix}}}
Wythoff symbol 2 | 5 4
5 5 | 2
Coxeter diagram or
or
Symmetry group , (*542)
, (*552)
Dual Order-5-4 rhombille tiling
Properties Vertex-transitive edge-transitive

In geometry, the tetrapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t1{4,5} or r{4,5}.

Symmetry

A half symmetry = construction exists, which can be seen as two colors of pentagons. This coloring can be called a rhombipentapentagonal tiling.

Dual tiling

The dual tiling is made of rhombic faces and has a face configuration V4.5.4.5:

Related polyhedra and tiling

Uniform pentagonal/square tilings
Symmetry: , (*542) , (542) , (5*2) , (*552)
{5,4} t{5,4} r{5,4} 2t{5,4}=t{4,5} 2r{5,4}={4,5} rr{5,4} tr{5,4} sr{5,4} s{5,4} h{4,5}
Uniform duals
V5 V4.10.10 V4.5.4.5 V5.8.8 V4 V4.4.5.4 V4.8.10 V3.3.4.3.5 V3.3.5.3.5 V5
Uniform pentapentagonal tilings
Symmetry: , (*552) , (552)

=

=

=

=

=

=

=

=
Order-5 pentagonal tiling
{5,5}
Truncated order-5 pentagonal tiling
t{5,5}
Order-4 pentagonal tiling
r{5,5}
Truncated order-5 pentagonal tiling
2t{5,5} = t{5,5}
Order-5 pentagonal tiling
2r{5,5} = {5,5}
Tetrapentagonal tiling
rr{5,5}
Truncated order-4 pentagonal tiling
tr{5,5}
Snub pentapentagonal tiling
sr{5,5}
Uniform duals
Order-5 pentagonal tiling
V5.5.5.5.5
V5.10.10 Order-5 square tiling
V5.5.5.5
V5.10.10 Order-5 pentagonal tiling
V5.5.5.5.5
V4.5.4.5 V4.10.10 V3.3.5.3.5
*n42 symmetry mutations of quasiregular tilings: (4.n)
Symmetry
*4n2
Spherical Euclidean Compact hyperbolic Paracompact Noncompact
*342
*442
*542
*642
*742
*842
...
*∞42
 
Figures
Config. (4.3) (4.4) (4.5) (4.6) (4.7) (4.8) (4.∞) (4.ni)
*5n2 symmetry mutations of quasiregular tilings: (5.n)
Symmetry
*5n2
Spherical Hyperbolic Paracompact Noncompact
*352
*452
*552
*652
*752
*852
...
*∞52
 
Figures
Config. (5.3) (5.4) (5.5) (5.6) (5.7) (5.8) (5.∞) (5.ni)
Rhombic
figures
Config. V(5.3) V(5.4) V(5.5) V(5.6) V(5.7) V(5.8) V(5.∞) V(5.∞)

See also

References

External links

Tessellation
Periodic


Aperiodic
Other
By vertex type
Spherical
Regular
Semi-
regular
Hyper-
bolic


Stub icon

This hyperbolic geometry-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: