Misplaced Pages

Topological pair

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Pair of spaces)

In mathematics, more specifically algebraic topology, a pair ( X , A ) {\displaystyle (X,A)} is shorthand for an inclusion of topological spaces i : A X {\displaystyle i\colon A\hookrightarrow X} . Sometimes i {\displaystyle i} is assumed to be a cofibration. A morphism from ( X , A ) {\displaystyle (X,A)} to ( X , A ) {\displaystyle (X',A')} is given by two maps f : X X {\displaystyle f\colon X\rightarrow X'} and g : A A {\displaystyle g\colon A\rightarrow A'} such that i g = f i {\displaystyle i'\circ g=f\circ i} .

A pair of spaces is an ordered pair (X, A) where X is a topological space and A a subspace. The use of pairs of spaces is sometimes more convenient and technically superior to taking a quotient space of X by A. Pairs of spaces occur centrally in relative homology, homology theory and cohomology theory, where chains in A {\displaystyle A} are made equivalent to 0, when considered as chains in X {\displaystyle X} .

Heuristically, one often thinks of a pair ( X , A ) {\displaystyle (X,A)} as being akin to the quotient space X / A {\displaystyle X/A} .

There is a functor from the category of topological spaces to the category of pairs of spaces, which sends a space X {\displaystyle X} to the pair ( X , ) {\displaystyle (X,\varnothing )} .

A related concept is that of a triple (X, A, B), with BAX. Triples are used in homotopy theory. Often, for a pointed space with basepoint at x0, one writes the triple as (X, A, B, x0), where x0BAX.

References

  1. ^ Hatcher, Allen (2002). Algebraic Topology. Cambridge University Press. ISBN 0-521-79540-0.
  • Patty, C. Wayne (2009), Foundations of Topology (2nd ed.), p. 276.


Stub icon

This topology-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: