Misplaced Pages

Paratingent cone

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the paratingent cone and contingent cone were introduced by Bouligand (1932), and are closely related to tangent cones.

Definition

Let S {\displaystyle S} be a nonempty subset of a real normed vector space ( X , ) {\displaystyle (X,\|\cdot \|)} .

  1. Let some x ¯ cl ( S ) {\displaystyle {\bar {x}}\in \operatorname {cl} (S)} be a point in the closure of S {\displaystyle S} . An element h X {\displaystyle h\in X} is called a tangent (or tangent vector) to S {\displaystyle S} at x ¯ {\displaystyle {\bar {x}}} , if there is a sequence ( x n ) n N {\displaystyle (x_{n})_{n\in \mathbb {N} }} of elements x n S {\displaystyle x_{n}\in S} and a sequence ( λ n ) n N {\displaystyle (\lambda _{n})_{n\in \mathbb {N} }} of positive real numbers λ n > 0 {\displaystyle \lambda _{n}>0} such that x ¯ = lim n x n {\displaystyle {\bar {x}}=\lim _{n\to \infty }x_{n}} and h = lim n λ n ( x n x ¯ ) . {\displaystyle h=\lim _{n\to \infty }\lambda _{n}(x_{n}-{\bar {x}}).}
  2. The set T ( S , x ¯ ) {\displaystyle T(S,{\bar {x}})} of all tangents to S {\displaystyle S} at x ¯ {\displaystyle {\bar {x}}} is called the contingent cone (or the Bouligand tangent cone) to S {\displaystyle S} at x ¯ {\displaystyle {\bar {x}}} .

An equivalent definition is given in terms of a distance function and the limit infimum. As before, let ( X , ) {\displaystyle (X,\|\cdot \|)} be a normed vector space and take some nonempty set S X {\displaystyle S\subset X} . For each x X {\displaystyle x\in X} , let the distance function to S {\displaystyle S} be

d S ( x ) := inf { x x x S } . {\displaystyle d_{S}(x):=\inf\{\|x-x'\|\mid x'\in S\}.}

Then, the contingent cone to S X {\displaystyle S\subset X} at x cl ( S ) {\displaystyle x\in \operatorname {cl} (S)} is defined by

T S ( x ) := { v : lim inf h 0 + d S ( x + h v ) h = 0 } . {\displaystyle T_{S}(x):=\left\{v:\liminf _{h\to 0^{+}}{\frac {d_{S}(x+hv)}{h}}=0\right\}.}

References

  1. Johannes, Jahn (2011). Vector Optimization. Springer Berlin Heidelberg. pp. 90–91. doi:10.1007/978-3-642-17005-8. ISBN 978-3-642-17005-8.
  2. Aubin, Jean-Pierre; Frankowska, Hèléne (2009). "Chapter 4: Tangent Cones". Set-Valued Analysis. Modern Birkhäuser Classics. Boston: Birkhäuser. p. 121. doi:10.1007/978-0-8176-4848-0_4. ISBN 978-0-8176-4848-0.


Stub icon

This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: