Misplaced Pages

Pearson's chi-squared test

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Pearson chi-squared test) Evaluates how likely it is that any difference between data sets arose by chance For broader coverage of this topic, see Chi-squared test.

Pearson's chi-squared test or Pearson's χ 2 {\displaystyle \chi ^{2}} test is a statistical test applied to sets of categorical data to evaluate how likely it is that any observed difference between the sets arose by chance. It is the most widely used of many chi-squared tests (e.g., Yates, likelihood ratio, portmanteau test in time series, etc.) – statistical procedures whose results are evaluated by reference to the chi-squared distribution. Its properties were first investigated by Karl Pearson in 1900. In contexts where it is important to improve a distinction between the test statistic and its distribution, names similar to Pearson χ-squared test or statistic are used.

It is a p-value test. The setup is as follows:

  • Before the experiment, the experimenter fixes a certain number N {\displaystyle N} of samples to take.
  • The observed data is ( O 1 , O 2 , . . . , O n ) {\displaystyle (O_{1},O_{2},...,O_{n})} , the count number of samples from a finite set of given categories. They satisfy i O i = N {\displaystyle \sum _{i}O_{i}=N} .
  • The null hypothesis is that the count numbers are sampled from a multinomial distribution M u l t i n o m i a l ( N ; p 1 , . . . , p n ) {\displaystyle \mathrm {Multinomial} (N;p_{1},...,p_{n})} . That is, the underlying data is sampled IID from a categorical distribution C a t e g o r i c a l ( p 1 , . . . , p n ) {\displaystyle \mathrm {Categorical} (p_{1},...,p_{n})} over the given categories.
  • The Pearson's chi-squared test statistic is defined as χ 2 := i ( O i N p i ) 2 N p i {\displaystyle \chi ^{2}:=\sum _{i}{\frac {(O_{i}-Np_{i})^{2}}{Np_{i}}}} . The p-value of the test statistic is computed either numerically or by looking it up in a table.
  • If the p-value is small enough (usually p < 0.05 by convention), then the null hypothesis is rejected, and we conclude that the observed data does not follow the multinomial distribution.

A simple example is testing the hypothesis that an ordinary six-sided ‹See Tfd›dice is "fair" (i. e., all six outcomes are equally likely to occur). In this case, the observed data is ( O 1 , O 2 , . . . , O 6 ) {\displaystyle (O_{1},O_{2},...,O_{6})} , the number of times that the dice has fallen on each number. The null hypothesis is M u l t i n o m i a l ( N ; 1 / 6 , . . . , 1 / 6 ) {\displaystyle \mathrm {Multinomial} (N;1/6,...,1/6)} , and χ 2 := i = 1 6 ( O i N / 6 ) 2 N / 6 {\displaystyle \chi ^{2}:=\sum _{i=1}^{6}{\frac {(O_{i}-N/6)^{2}}{N/6}}} . As detailed below, if χ 2 > 11.07 {\displaystyle \chi ^{2}>11.07} , then the fairness of dice can be rejected at the level of p < 0.05 {\displaystyle p<0.05} .

Usage

Pearson's chi-squared test is used to assess three types of comparison: goodness of fit, homogeneity, and independence.

  • A test of goodness of fit establishes whether an observed frequency distribution differs from a theoretical distribution.
  • A test of homogeneity compares the distribution of counts for two or more groups using the same categorical variable (e.g. choice of activity—college, military, employment, travel—of graduates of a high school reported a year after graduation, sorted by graduation year, to see if number of graduates choosing a given activity has changed from class to class, or from decade to decade).
  • A test of independence assesses whether observations consisting of measures on two variables, expressed in a contingency table, are independent of each other (e.g. polling responses from people of different nationalities to see if one's nationality is related to the response).

For all three tests, the computational procedure includes the following steps:

  1. Calculate the chi-squared test statistic, χ 2 {\displaystyle \chi ^{2}} , which resembles a normalized sum of squared deviations between observed and theoretical frequencies (see below).
  2. Determine the degrees of freedom, df, of that statistic.
    1. For a test of goodness-of-fit, df = Cats − Params, where Cats is the number of observation categories recognized by the model, and Params is the number of parameters in the model adjusted to make the model best fit the observations: The number of categories reduced by the number of fitted parameters in the distribution.
    2. For a test of homogeneity, df = (Rows − 1)×(Cols − 1), where Rows corresponds to the number of categories (i.e. rows in the associated contingency table), and Cols corresponds to the number of independent groups (i.e. columns in the associated contingency table).
    3. For a test of independence, df = (Rows − 1)×(Cols − 1), where in this case, Rows corresponds to the number of categories in one variable, and Cols corresponds to the number of categories in the second variable.
  3. Select a desired level of confidence (significance level, p-value, or the corresponding alpha level) for the result of the test.
  4. Compare χ 2 {\displaystyle \chi ^{2}} to the critical value from the chi-squared distribution with df degrees of freedom and the selected confidence level (one-sided, since the test is only in one direction, i.e. is the test value greater than the critical value?), which in many cases gives a good approximation of the distribution of χ 2 {\displaystyle \chi ^{2}} .
  5. Sustain or reject the null hypothesis that the observed frequency distribution is the same as the theoretical distribution based on whether the test statistic exceeds the critical value of χ 2 {\displaystyle \chi ^{2}} . If the test statistic exceeds the critical value of χ 2 {\displaystyle \chi ^{2}} , the null hypothesis ( H 0 {\displaystyle H_{0}} = there is no difference between the distributions) can be rejected, and the alternative hypothesis ( H 1 {\displaystyle H_{1}} = there is a difference between the distributions) can be accepted, both with the selected level of confidence. If the test statistic falls below the threshold χ 2 {\displaystyle \chi ^{2}} value, then no clear conclusion can be reached, and the null hypothesis is sustained (we fail to reject the null hypothesis), though not necessarily accepted.

Test for fit of a distribution

Discrete uniform distribution

In this case N {\displaystyle N} observations are divided among n {\displaystyle n} cells. A simple application is to test the hypothesis that, in the general population, values would occur in each cell with equal frequency. The "theoretical frequency" for any cell (under the null hypothesis of a discrete uniform distribution) is thus calculated as

E i = N n , {\displaystyle E_{i}={\frac {N}{n}}\,,}

and the reduction in the degrees of freedom is p = 1 {\displaystyle p=1} , notionally because the observed frequencies O i {\displaystyle O_{i}} are constrained to sum to N {\displaystyle N} .

One specific example of its application would be its application for log-rank test.

Other distributions

When testing whether observations are random variables whose distribution belongs to a given family of distributions, the "theoretical frequencies" are calculated using a distribution from that family fitted in some standard way. The reduction in the degrees of freedom is calculated as p = s + 1 {\displaystyle p=s+1} , where s {\displaystyle s} is the number of parameters used in fitting the distribution. For instance, when checking a three-parameter Generalized gamma distribution, p = 4 {\displaystyle p=4} , and when checking a normal distribution (where the parameters are mean and standard deviation), p = 3 {\displaystyle p=3} , and when checking a Poisson distribution (where the parameter is the expected value), p = 2 {\displaystyle p=2} . Thus, there will be n p {\displaystyle n-p} degrees of freedom, where n {\displaystyle n} is the number of categories.

The degrees of freedom are not based on the number of observations as with a Student's t or F-distribution. For example, if testing for a fair, six-sided ‹See Tfd›die, there would be five degrees of freedom because there are six categories or parameters (each number); the number of times the die is rolled does not influence the number of degrees of freedom.

Calculating the test-statistic

Chi-squared distribution, showing X on the x-axis and P-value on the y-axis.
Upper-tail critical values of chi-square distribution
Degrees
of
freedom
Probability less than the critical value
0.90 0.95 0.975 0.99 0.999
1 2.706 3.841 5.024 6.635 10.828
2 4.605 5.991 7.378 9.210 13.816
3 6.251 7.815 9.348 11.345 16.266
4 7.779 9.488 11.143 13.277 18.467
5 9.236 11.070 12.833 15.086 20.515
6 10.645 12.592 14.449 16.812 22.458
7 12.017 14.067 16.013 18.475 24.322
8 13.362 15.507 17.535 20.090 26.125
9 14.684 16.919 19.023 21.666 27.877
10 15.987 18.307 20.483 23.209 29.588
11 17.275 19.675 21.920 24.725 31.264
12 18.549 21.026 23.337 26.217 32.910
13 19.812 22.362 24.736 27.688 34.528
14 21.064 23.685 26.119 29.141 36.123
15 22.307 24.996 27.488 30.578 37.697
16 23.542 26.296 28.845 32.000 39.252
17 24.769 27.587 30.191 33.409 40.790
18 25.989 28.869 31.526 34.805 42.312
19 27.204 30.144 32.852 36.191 43.820
20 28.412 31.410 34.170 37.566 45.315
21 29.615 32.671 35.479 38.932 46.797
22 30.813 33.924 36.781 40.289 48.268
23 32.007 35.172 38.076 41.638 49.728
24 33.196 36.415 39.364 42.980 51.179
25 34.382 37.652 40.646 44.314 52.620
26 35.563 38.885 41.923 45.642 54.052
27 36.741 40.113 43.195 46.963 55.476
28 37.916 41.337 44.461 48.278 56.892
29 39.087 42.557 45.722 49.588 58.301
30 40.256 43.773 46.979 50.892 59.703
31 41.422 44.985 48.232 52.191 61.098
32 42.585 46.194 49.480 53.486 62.487
33 43.745 47.400 50.725 54.776 63.870
34 44.903 48.602 51.966 56.061 65.247
35 46.059 49.802 53.203 57.342 66.619
36 47.212 50.998 54.437 58.619 67.985
37 48.363 52.192 55.668 59.893 69.347
38 49.513 53.384 56.896 61.162 70.703
39 50.660 54.572 58.120 62.428 72.055
40 51.805 55.758 59.342 63.691 73.402
41 52.949 56.942 60.561 64.950 74.745
42 54.090 58.124 61.777 66.206 76.084
43 55.230 59.304 62.990 67.459 77.419
44 56.369 60.481 64.201 68.710 78.750
45 57.505 61.656 65.410 69.957 80.077
46 58.641 62.830 66.617 71.201 81.400
47 59.774 64.001 67.821 72.443 82.720
48 60.907 65.171 69.023 73.683 84.037
49 62.038 66.339 70.222 74.919 85.351
50 63.167 67.505 71.420 76.154 86.661
51 64.295 68.669 72.616 77.386 87.968
52 65.422 69.832 73.810 78.616 89.272
53 66.548 70.993 75.002 79.843 90.573
54 67.673 72.153 76.192 81.069 91.872
55 68.796 73.311 77.380 82.292 93.168
56 69.919 74.468 78.567 83.513 94.461
57 71.040 75.624 79.752 84.733 95.751
58 72.160 76.778 80.936 85.950 97.039
59 73.279 77.931 82.117 87.166 98.324
60 74.397 79.082 83.298 88.379 99.607
61 75.514 80.232 84.476 89.591 100.888
62 76.630 81.381 85.654 90.802 102.166
63 77.745 82.529 86.830 92.010 103.442
64 78.860 83.675 88.004 93.217 104.716
65 79.973 84.821 89.177 94.422 105.988
66 81.085 85.965 90.349 95.626 107.258
67 82.197 87.108 91.519 96.828 108.526
68 83.308 88.250 92.689 98.028 109.791
69 84.418 89.391 93.856 99.228 111.055
70 85.527 90.531 95.023 100.425 112.317
71 86.635 91.670 96.189 101.621 113.577
72 87.743 92.808 97.353 102.816 114.835
73 88.850 93.945 98.516 104.010 116.092
74 89.956 95.081 99.678 105.202 117.346
75 91.061 96.217 100.839 106.393 118.599
76 92.166 97.351 101.999 107.583 119.850
77 93.270 98.484 103.158 108.771 121.100
78 94.374 99.617 104.316 109.958 122.348
79 95.476 100.749 105.473 111.144 123.594
80 96.578 101.879 106.629 112.329 124.839
81 97.680 103.010 107.783 113.512 126.083
82 98.780 104.139 108.937 114.695 127.324
83 99.880 105.267 110.090 115.876 128.565
84 100.980 106.395 111.242 117.057 129.804
85 102.079 107.522 112.393 118.236 131.041
86 103.177 108.648 113.544 119.414 132.277
87 104.275 109.773 114.693 120.591 133.512
88 105.372 110.898 115.841 121.767 134.746
89 106.469 112.022 116.989 122.942 135.978
90 107.565 113.145 118.136 124.116 137.208
91 108.661 114.268 119.282 125.289 138.438
92 109.756 115.390 120.427 126.462 139.666
93 110.850 116.511 121.571 127.633 140.893
94 111.944 117.632 122.715 128.803 142.119
95 113.038 118.752 123.858 129.973 143.344
96 114.131 119.871 125.000 131.141 144.567
97 115.223 120.990 126.141 132.309 145.789
98 116.315 122.108 127.282 133.476 147.010
99 117.407 123.225 128.422 134.642 148.230
100 118.498 124.342 129.561 135.807 149.449

The value of the test-statistic is

χ 2 = i = 1 n ( O i E i ) 2 E i = N i = 1 n ( O i / N p i ) 2 p i {\displaystyle \chi ^{2}=\sum _{i=1}^{n}{\frac {(O_{i}-E_{i})^{2}}{E_{i}}}=N\sum _{i=1}^{n}{\frac {\left(O_{i}/N-p_{i}\right)^{2}}{p_{i}}}}

where

  • χ 2 {\displaystyle \chi ^{2}} = Pearson's cumulative test statistic, which asymptotically approaches a χ 2 {\displaystyle \chi ^{2}} distribution.
  • O i {\displaystyle O_{i}} = the number of observations of type i.
  • N {\displaystyle N} = total number of observations
  • E i = N p i {\displaystyle E_{i}=Np_{i}} = the expected (theoretical) count of type i, asserted by the null hypothesis that the fraction of type i in the population is p i {\displaystyle p_{i}}
  • n {\displaystyle n} = the number of cells in the table.

The chi-squared statistic can then be used to calculate a p-value by comparing the value of the statistic to a chi-squared distribution. The number of degrees of freedom is equal to the number of cells n {\displaystyle n} , minus the reduction in degrees of freedom, p {\displaystyle p} .

The chi-squared statistic can be also calculated as

χ 2 = i = 1 n O i 2 E i N . {\displaystyle \chi ^{2}=\sum _{i=1}^{n}{\frac {O_{i}^{2}}{E_{i}}}-N.}

This result is the consequence of the Binomial theorem.

The result about the numbers of degrees of freedom is valid when the original data are multinomial and hence the estimated parameters are efficient for minimizing the chi-squared statistic. More generally however, when maximum likelihood estimation does not coincide with minimum chi-squared estimation, the distribution will lie somewhere between a chi-squared distribution with n 1 p {\displaystyle n-1-p} and n 1 {\displaystyle n-1} degrees of freedom (See for instance Chernoff and Lehmann, 1954).

The chi-squared test indicates a statistically significant association between the level of education completed and routine check-up attendance (chi2(3) = 14.6090, p = 0.002). The proportions suggest that as the level of education increases, so does the proportion of individuals attending routine check-ups. Specifically, individuals who have graduated from college or university attend routine check-ups at a higher proportion (31.52%) compared to those who have not graduated high school (8.44%). This finding may suggest that higher educational attainment is associated with a greater likelihood of engaging in health-promoting behaviors such as routine check-ups.

Bayesian method

Further information: Categorical distribution § Bayesian inference using conjugate prior

In Bayesian statistics, one would instead use a Dirichlet distribution as conjugate prior. If one took a uniform prior, then the maximum likelihood estimate for the population probability is the observed probability, and one may compute a credible region around this or another estimate.

Testing for statistical independence

In this case, an "observation" consists of the values of two outcomes and the null hypothesis is that the occurrence of these outcomes is statistically independent. Each observation is allocated to one cell of a two-dimensional array of cells (called a contingency table) according to the values of the two outcomes. If there are r rows and c columns in the table, the "theoretical frequency" for a cell, given the hypothesis of independence, is

E i , j = N p i p j , {\displaystyle E_{i,j}=Np_{i\cdot }p_{\cdot j},}

where N {\displaystyle N} is the total sample size (the sum of all cells in the table), and

p i = O i N = j = 1 c O i , j N , {\displaystyle p_{i\cdot }={\frac {O_{i\cdot }}{N}}=\sum _{j=1}^{c}{\frac {O_{i,j}}{N}},}

is the fraction of observations of type i ignoring the column attribute (fraction of row totals), and

p j = O j N = i = 1 r O i , j N {\displaystyle p_{\cdot j}={\frac {O_{\cdot j}}{N}}=\sum _{i=1}^{r}{\frac {O_{i,j}}{N}}}

is the fraction of observations of type j ignoring the row attribute (fraction of column totals). The term "frequencies" refers to absolute numbers rather than already normalized values.

The value of the test-statistic is

χ 2 = i = 1 r j = 1 c ( O i , j E i , j ) 2 E i , j {\displaystyle \chi ^{2}=\sum _{i=1}^{r}\sum _{j=1}^{c}{(O_{i,j}-E_{i,j})^{2} \over E_{i,j}}}
        = N i , j p i p j ( ( O i , j / N ) p i p j p i p j ) 2 {\displaystyle \ \ \ \ =N\sum _{i,j}p_{i\cdot }p_{\cdot j}\left({\frac {(O_{i,j}/N)-p_{i\cdot }p_{\cdot j}}{p_{i\cdot }p_{\cdot j}}}\right)^{2}}

Note that χ 2 {\displaystyle \chi ^{2}} is 0 if and only if O i , j = E i , j i , j {\displaystyle O_{i,j}=E_{i,j}\forall i,j} , i.e. only if the expected and true number of observations are equal in all cells.

Fitting the model of "independence" reduces the number of degrees of freedom by p = r + c − 1. The number of degrees of freedom is equal to the number of cells rc, minus the reduction in degrees of freedom, p, which reduces to (r − 1)(c − 1).

For the test of independence, also known as the test of homogeneity, a chi-squared probability of less than or equal to 0.05 (or the chi-squared statistic being at or larger than the 0.05 critical point) is commonly interpreted by applied workers as justification for rejecting the null hypothesis that the row variable is independent of the column variable. The alternative hypothesis corresponds to the variables having an association or relationship where the structure of this relationship is not specified.

Assumptions

The chi-squared test, when used with the standard approximation that a chi-squared distribution is applicable, has the following assumptions:

Simple random sample
The sample data is a random sampling from a fixed distribution or population where every collection of members of the population of the given sample size has an equal probability of selection. Variants of the test have been developed for complex samples, such as where the data is weighted. Other forms can be used such as purposive sampling.
Sample size (whole table)
A sample with a sufficiently large size is assumed. If a chi squared test is conducted on a sample with a smaller size, then the chi squared test will yield an inaccurate inference. The researcher, by using chi squared test on small samples, might end up committing a Type II error. For small sample sizes the Cash test is preferred.
Expected cell count
Adequate expected cell counts. Some require 5 or more, and others require 10 or more. A common rule is 5 or more in all cells of a 2-by-2 table, and 5 or more in 80% of cells in larger tables, but no cells with zero expected count. When this assumption is not met, Yates's correction is applied.
Independence
The observations are always assumed to be independent of each other. This means chi-squared cannot be used to test correlated data (like matched pairs or panel data). In those cases, McNemar's test may be more appropriate.

A test that relies on different assumptions is Fisher's exact test; if its assumption of fixed marginal distributions is met it is substantially more accurate in obtaining a significance level, especially with few observations. In the vast majority of applications this assumption will not be met, and Fisher's exact test will be over conservative and not have correct coverage.

Derivation

Derivation using Central Limit Theorem

The null distribution of the Pearson statistic with j rows and k columns is approximated by the chi-squared distribution with (k − 1)(j − 1) degrees of freedom.

This approximation arises as the true distribution, under the null hypothesis, if the expected value is given by a multinomial distribution. For large sample sizes, the central limit theorem says this distribution tends toward a certain multivariate normal distribution.

Two cells

In the special case where there are only two cells in the table, the expected values follow a binomial distribution,

O     Bin ( n , p ) , {\displaystyle O\ \sim \ {\mbox{Bin}}(n,p),\,}

where

p = probability, under the null hypothesis,
n = number of observations in the sample.

In the above example the hypothesised probability of a male observation is 0.5, with 100 samples. Thus we expect to observe 50 males.

If n is sufficiently large, the above binomial distribution may be approximated by a Gaussian (normal) distribution and thus the Pearson test statistic approximates a chi-squared distribution,

Bin ( n , p ) N ( n p , n p ( 1 p ) ) . {\displaystyle {\text{Bin}}(n,p)\approx {\text{N}}(np,np(1-p)).\,}

Let O1 be the number of observations from the sample that are in the first cell. The Pearson test statistic can be expressed as

( O 1 n p ) 2 n p + ( n O 1 n ( 1 p ) ) 2 n ( 1 p ) , {\displaystyle {\frac {(O_{1}-np)^{2}}{np}}+{\frac {(n-O_{1}-n(1-p))^{2}}{n(1-p)}},}

which can in turn be expressed as

( O 1 n p n p ( 1 p ) ) 2 . {\displaystyle \left({\frac {O_{1}-np}{\sqrt {np(1-p)}}}\right)^{2}.}

By the normal approximation to a binomial this is the squared of one standard normal variate, and hence is distributed as chi-squared with 1 degree of freedom. Note that the denominator is one standard deviation of the Gaussian approximation, so can be written

( O 1 μ ) 2 σ 2 . {\displaystyle {\frac {(O_{1}-\mu )^{2}}{\sigma ^{2}}}.}

So as consistent with the meaning of the chi-squared distribution, we are measuring how probable the observed number of standard deviations away from the mean is under the Gaussian approximation (which is a good approximation for large n).

The chi-squared distribution is then integrated on the right of the statistic value to obtain the P-value, which is equal to the probability of getting a statistic equal or bigger than the observed one, assuming the null hypothesis.

Two-by-two contingency tables

When the test is applied to a contingency table containing two rows and two columns, the test is equivalent to a Z-test of proportions.

Many cells

Broadly similar arguments as above lead to the desired result, though the details are more involved. One may apply an orthogonal change of variables to turn the limiting summands in the test statistic into one fewer squares of i.i.d. standard normal random variables.

Let us now prove that the distribution indeed approaches asymptotically the χ 2 {\displaystyle \chi ^{2}} distribution as the number of observations approaches infinity.

Let n {\displaystyle n} be the number of observations, m {\displaystyle m} the number of cells and p i {\displaystyle p_{i}} the probability of an observation to fall in the i-th cell, for 1 i m {\displaystyle 1\leq i\leq m} . We denote by { k i } {\displaystyle \{k_{i}\}} the configuration where for each i there are k i {\displaystyle k_{i}} observations in the i-th cell. Note that

i = 1 m k i = n and i = 1 m p i = 1. {\displaystyle \sum _{i=1}^{m}k_{i}=n\qquad {\text{and}}\qquad \sum _{i=1}^{m}p_{i}=1.}

Let χ P 2 ( { k i } , { p i } ) {\displaystyle \chi _{P}^{2}(\{k_{i}\},\{p_{i}\})} be Pearson's cumulative test statistic for such a configuration, and let χ P 2 ( { p i } ) {\displaystyle \chi _{P}^{2}(\{p_{i}\})} be the distribution of this statistic. We will show that the latter probability approaches the χ 2 {\displaystyle \chi ^{2}} distribution with m 1 {\displaystyle m-1} degrees of freedom, as n . {\displaystyle n\to \infty .}

For any arbitrary value T:

P ( χ P 2 ( { p i } ) > T ) = { k i } | χ P 2 ( { k i } , { p i } ) > T n ! k 1 ! k m ! i = 1 m p i k i {\displaystyle P(\chi _{P}^{2}(\{p_{i}\})>T)=\sum _{\{k_{i}\}|\chi _{P}^{2}(\{k_{i}\},\{p_{i}\})>T}{\frac {n!}{k_{1}!\cdots k_{m}!}}\prod _{i=1}^{m}{p_{i}}^{k_{i}}}

We will use a procedure similar to the approximation in de Moivre–Laplace theorem. Contributions from small k i {\displaystyle k_{i}} are of subleading order in n {\displaystyle n} and thus for large n {\displaystyle n} we may use Stirling's formula for both n ! {\displaystyle n!} and k i ! {\displaystyle k_{i}!} to get the following:

P ( χ P 2 ( { p i } ) > T ) { k i } | χ P 2 ( { k i } , { p i } ) > T i = 1 m ( n p i k i ) k i 2 π n i = 1 m 2 π k i {\displaystyle P(\chi _{P}^{2}(\{p_{i}\})>T)\sim \sum _{\{k_{i}\}|\chi _{P}^{2}(\{k_{i}\},\{p_{i}\})>T}\prod _{i=1}^{m}\left({\frac {np_{i}}{k_{i}}}\right)^{k_{i}}{\sqrt {\frac {2\pi n}{\prod _{i=1}^{m}2\pi k_{i}}}}}

By substituting for

x i = k i n p i n , i = 1 , , m 1 , {\displaystyle x_{i}={\frac {k_{i}-np_{i}}{\sqrt {n}}},\qquad i=1,\cdots ,m-1,}

we may approximate for large n {\displaystyle n} the sum over the k i {\displaystyle k_{i}} by an integral over the x i {\displaystyle x_{i}} . Noting that:

k m = n p m n i = 1 m 1 x i , {\displaystyle k_{m}=np_{m}-{\sqrt {n}}\sum _{i=1}^{m-1}x_{i},}

we arrive at

P ( χ P 2 ( { p i } ) > T ) 2 π n i = 1 m 2 π k i χ P 2 ( { n x i + n p i } , { p i } ) > T { i = 1 m 1 n d x i } { i = 1 m 1 ( 1 + x i n p i ) ( n p i + n x i ) ( 1 i = 1 m 1 x i n p m ) ( n p m n i = 1 m 1 x i ) } = 2 π n i = 1 m ( 2 π n p i + 2 π n x i ) χ P 2 ( { n x i + n p i } , { p i } ) > T { i = 1 m 1 n d x i } × × { i = 1 m 1 exp [ ( n p i + n x i ) ln ( 1 + x i n p i ) ] exp [ ( n p m n i = 1 m 1 x i ) ln ( 1 i = 1 m 1 x i n p m ) ] } {\displaystyle {\begin{aligned}P(\chi _{P}^{2}(\{p_{i}\})>T)&\sim {\sqrt {\frac {2\pi n}{\prod _{i=1}^{m}2\pi k_{i}}}}\int _{\chi _{P}^{2}(\{{\sqrt {n}}x_{i}+np_{i}\},\{p_{i}\})>T}\left\{\prod _{i=1}^{m-1}{{\sqrt {n}}dx_{i}}\right\}\left\{\prod _{i=1}^{m-1}\left(1+{\frac {x_{i}}{{\sqrt {n}}p_{i}}}\right)^{-(np_{i}+{\sqrt {n}}x_{i})}\left(1-{\frac {\sum _{i=1}^{m-1}{x_{i}}}{{\sqrt {n}}p_{m}}}\right)^{-\left(np_{m}-{\sqrt {n}}\sum _{i=1}^{m-1}x_{i}\right)}\right\}\\&={\sqrt {\frac {2\pi n}{\prod _{i=1}^{m}\left(2\pi np_{i}+2\pi {\sqrt {n}}x_{i}\right)}}}\int _{\chi _{P}^{2}(\{{\sqrt {n}}x_{i}+np_{i}\},\{p_{i}\})>T}\left\{\prod _{i=1}^{m-1}{{\sqrt {n}}dx_{i}}\right\}\times \\&\qquad \qquad \times \left\{\prod _{i=1}^{m-1}\exp \left\exp \left\right\}\end{aligned}}}

By expanding the logarithm and taking the leading terms in n {\displaystyle n} , we get

P ( χ P 2 ( { p i } ) > T ) 1 ( 2 π ) m 1 i = 1 m p i χ P 2 ( { n x i + n p i } , { p i } ) > T { i = 1 m 1 d x i } i = 1 m 1 exp [ 1 2 i = 1 m 1 x i 2 p i 1 2 p m ( i = 1 m 1 x i ) 2 ] {\displaystyle P(\chi _{P}^{2}(\{p_{i}\})>T)\sim {\frac {1}{\sqrt {(2\pi )^{m-1}\prod _{i=1}^{m}p_{i}}}}\int _{\chi _{P}^{2}(\{{\sqrt {n}}x_{i}+np_{i}\},\{p_{i}\})>T}\left\{\prod _{i=1}^{m-1}dx_{i}\right\}\prod _{i=1}^{m-1}\exp \left}

Pearson's chi, χ P 2 ( { k i } , { p i } ) = χ P 2 ( { n x i + n p i } , { p i } ) {\displaystyle \chi _{P}^{2}(\{k_{i}\},\{p_{i}\})=\chi _{P}^{2}(\{{\sqrt {n}}x_{i}+np_{i}\},\{p_{i}\})} , is precisely the argument of the exponent (except for the -1/2; note that the final term in the exponent's argument is equal to ( k m n p m ) 2 / ( n p m ) {\displaystyle (k_{m}-np_{m})^{2}/(np_{m})} ).

This argument can be written as:

1 2 i , j = 1 m 1 x i A i j x j , i , j = 1 , , m 1 , A i j = δ i j p i + 1 p m . {\displaystyle -{\frac {1}{2}}\sum _{i,j=1}^{m-1}x_{i}A_{ij}x_{j},\qquad i,j=1,\cdots ,m-1,\quad A_{ij}={\tfrac {\delta _{ij}}{p_{i}}}+{\tfrac {1}{p_{m}}}.}

A {\displaystyle A} is a regular symmetric ( m 1 ) × ( m 1 ) {\displaystyle (m-1)\times (m-1)} matrix, and hence diagonalizable. It is therefore possible to make a linear change of variables in { x i } {\displaystyle \{x_{i}\}} so as to get m 1 {\displaystyle m-1} new variables { y i } {\displaystyle \{y_{i}\}} so that:

i , j = 1 m 1 x i A i j x j = i = 1 m 1 y i 2 . {\displaystyle \sum _{i,j=1}^{m-1}x_{i}A_{ij}x_{j}=\sum _{i=1}^{m-1}y_{i}^{2}.}

This linear change of variables merely multiplies the integral by a constant Jacobian, so we get:

P ( χ P 2 ( { p i } ) > T ) C i = 1 m 1 y i 2 > T { i = 1 m 1 d y i } i = 1 m 1 exp [ 1 2 ( i = 1 m 1 y i 2 ) ] {\displaystyle P(\chi _{P}^{2}(\{p_{i}\})>T)\sim C\int _{\sum _{i=1}^{m-1}y_{i}^{2}>T}\left\{\prod _{i=1}^{m-1}dy_{i}\right\}\prod _{i=1}^{m-1}\exp \left}

Where C is a constant.

This is the probability that squared sum of m 1 {\displaystyle m-1} independent normally distributed variables of zero mean and unit variance will be greater than T, namely that χ 2 {\displaystyle \chi ^{2}} with m 1 {\displaystyle m-1} degrees of freedom is larger than T.

We have thus shown that at the limit where n , {\displaystyle n\to \infty ,} the distribution of Pearson's chi approaches the chi distribution with m 1 {\displaystyle m-1} degrees of freedom.

An alternative derivation is on the multinomial distribution page.

Examples

Fairness of dice

A 6-sided die is thrown 60 times. The number of times it lands with 1, 2, 3, 4, 5 and 6 face up is 5, 8, 9, 8, 10 and 20, respectively. Is the die biased, according to the Pearson's chi-squared test at a significance level of 95% and/or 99%?

The null hypothesis is that the die is unbiased, hence each number is expected to occur the same number of times, in this case, ⁠60/n⁠ = 10. The outcomes can be tabulated as follows:

i {\displaystyle i} O i {\displaystyle O_{i}} E i {\displaystyle E_{i}} O i E i {\displaystyle O_{i}-E_{i}} ( O i E i ) 2 {\displaystyle (O_{i}-E_{i})^{2}}
1 5 10 −5 25
2 8 10 −2 4
3 9 10 −1 1
4 8 10 −2 4
5 10 10 0 0
6 20 10 10 100
Sum 134

We then consult an Upper-tail critical values of chi-square distribution table, the tabular value refers to the sum of the squared variables each divided by the expected outcomes. For the present example, this means

χ 2 = 25 / 10 + 4 / 10 + 1 / 10 + 4 / 10 + 0 / 10 + 100 / 10 = 13.4 {\displaystyle {\chi ^{2}}=25/10+4/10+1/10+4/10+0/10+100/10=13.4}

This is the experimental result whose unlikeliness (with a fair die) we wish to estimate.

Degrees
of
freedom
Probability less than the critical value
0.90 0.95 0.975 0.99 0.999
5 9.236 11.070 12.833 15.086 20.515

The experimental sum of 13.4 is between the critical values of 97.5% and 99% significance or confidence (p-value). Specifically, getting 20 rolls of 6, when the expectation is only 10 such values, is unlikely with a fair die.

Chi-squared goodness of fit test

Main article: Goodness of fit

In this context, the frequencies of both theoretical and empirical distributions are unnormalised counts, and for a chi-squared test the total sample sizes N {\displaystyle N} of both these distributions (sums of all cells of the corresponding contingency tables) have to be the same.

For example, to test the hypothesis that a random sample of 100 people has been drawn from a population in which men and women are equal in frequency, the observed number of men and women would be compared to the theoretical frequencies of 50 men and 50 women. If there were 44 men in the sample and 56 women, then

χ 2 = ( 44 50 ) 2 50 + ( 56 50 ) 2 50 = 1.44. {\displaystyle \chi ^{2}={(44-50)^{2} \over 50}+{(56-50)^{2} \over 50}=1.44.}

If the null hypothesis is true (i.e., men and women are chosen with equal probability), the test statistic will be drawn from a chi-squared distribution with one degree of freedom (because if the male frequency is known, then the female frequency is determined).

Consultation of the chi-squared distribution for 1 degree of freedom shows that the probability of observing this difference (or a more extreme difference than this) if men and women are equally numerous in the population is approximately 0.23. This probability is higher than conventional criteria for statistical significance (0.01 or 0.05), so normally we would not reject the null hypothesis that the number of men in the population is the same as the number of women (i.e., we would consider our sample within the range of what we would expect for a 50/50 male/female ratio.)

Problems

The approximation to the chi-squared distribution breaks down if expected frequencies are too low. It will normally be acceptable so long as no more than 20% of the events have expected frequencies below 5. Where there is only 1 degree of freedom, the approximation is not reliable if expected frequencies are below 10. In this case, a better approximation can be obtained by reducing the absolute value of each difference between observed and expected frequencies by 0.5 before squaring; this is called Yates's correction for continuity.

In cases where the expected value, E, is found to be small (indicating a small underlying population probability, and/or a small number of observations), the normal approximation of the multinomial distribution can fail, and in such cases it is found to be more appropriate to use the G-test, a likelihood ratio-based test statistic. When the total sample size is small, it is necessary to use an appropriate exact test, typically either the binomial test or, for contingency tables, Fisher's exact test. This test uses the conditional distribution of the test statistic given the marginal totals, and thus assumes that the margins were determined before the study; alternatives such as Boschloo's test which do not make this assumption are uniformly more powerful.

It can be shown that the χ 2 {\displaystyle \chi ^{2}} test is a low order approximation of the Ψ {\displaystyle \Psi } test. The above reasons for the above issues become apparent when the higher order terms are investigated.

See also

Notes

  1. Pearson, Karl (1900). "On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling". Philosophical Magazine. Series 5. 50 (302): 157–175. doi:10.1080/14786440009463897.
  2. Loukas, Orestis; Chung, Ho Ryun (2022). "Entropy-based Characterization of Modeling Constraints". arXiv:2206.14105 .
  3. Loukas, Orestis; Chung, Ho Ryun (2023). "Total Empiricism: Learning from Data". arXiv:2311.08315 .
  4. ^ David E. Bock, Paul F. Velleman, Richard D. De Veaux (2007). "Stats, Modeling the World," pp. 606-627, Pearson Addison Wesley, Boston, ISBN 0-13-187621-X
  5. "1.3.6.7.4. Critical Values of the Chi-Square Distribution". Retrieved 14 October 2014.
  6. "Critical Values of the Chi-Squared Distribution". NIST/SEMATECH e-Handbook of Statistical Methods. National Institute of Standards and Technology.
  7. McHugh, Mary (15 June 2013). "The chi-square test of independence". Biochemia Medica. 23 (2): 143–149. doi:10.11613/BM.2013.018. PMC 3900058. PMID 23894860.
  8. See Field, Andy. Discovering Statistics Using SPSS. for assumptions on Chi Square.
  9. Cash, W. (1979). "Parameter estimation in astronomy through application of the likelihood ratio". The Astrophysical Journal. 228: 939. Bibcode:1979ApJ...228..939C. doi:10.1086/156922. ISSN 0004-637X.
  10. "The Cash Statistic and Forward Fitting". hesperia.gsfc.nasa.gov. Retrieved 19 October 2021.
  11. "A Bayesian Formulation for Exploratory Data Analysis and Goodness-of-Fit Testing" (PDF). International Statistical Review. p. 375.
  12. Statistics for Applications. MIT OpenCourseWare. Lecture 23. Pearson's Theorem. Retrieved 21 March 2007.
  13. Benhamou, Eric; Melot, Valentin (3 September 2018). "Seven Proofs of the Pearson Chi-Squared Independence Test and its Graphical Interpretation". p. 5-6. arXiv:1808.09171 .
  14. Jaynes, E.T. (2003). Probability Theory: The Logic of Science. C. University Press. p. 298. ISBN 978-0-521-59271-0. (Link is to a fragmentary edition of March 1996.)

References

Statistics
Descriptive statistics
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Data collection
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical inference
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical / Multivariate / Time-series / Survival analysis
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Applications
Biostatistics
Engineering statistics
Social statistics
Spatial statistics
Categories: