Misplaced Pages

Photon-induced electric field poling

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Photon induced electric field poling)
The topic of this article may not meet Misplaced Pages's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.
Find sources: "Photon-induced electric field poling" – news · newspapers · books · scholar · JSTOR (August 2012) (Learn how and when to remove this message)

In physics, photon-induced electric field poling is a phenomenon whereby a pattern of local electric field orientations can be encoded in a suitable ferroelectric material, such as perovskite. The resulting encoded material is conceptually similar to the pattern of magnetic field orientations within the magnetic domains of a ferromagnet, and thus may be considered as a possible technology for computer storage media. The encoded regions are optically active (have a varying index of refraction) and thus may be "read out" optically.

Encoding process

The encoding process proceeds by application of ultraviolet light tuned to the absorption band associated with the transition of electrons from the valence band to the conduction band. During UV application, an external electric field is used to modify the electric dipole moment of regions of the ferroelectric material that are exposed to UV light. By this process, a pattern of local electric field orientations can be encoded.

Technically, the encoding effect proceeds by the creation of a population inversion between the valence and conduction bands, with the resulting creation of plasmons. During this time, ferroelectric perovskite materials can be forced to change geometry by the application of an electric field. The encoded regions become optically active due to the Pockels effect.

Decoding process

The pattern of ferroelectric domain orientations can be read out optically. The refractive index of the ferroelectric material at wavelengths from near-infrared through to near-ultraviolet is affected by the electric field within the material. A changing pattern of electric field domains within a ferroelectric substrate results in different regions of the substrate having different refractive indices. Under these conditions, the substrate behaves as a diffraction grating, allowing the pattern of domains to be inferred from the interference pattern present in the transmitted readout beam.

See also

References

References discussing techniques described in this article

References describing related techniques

Other articles about ferroelectric data storage

Categories: