Misplaced Pages

Pioneer anomaly

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Pioneer effect) Deviation in spacecraft deceleration

The Pioneer anomaly, or Pioneer effect, was the observed deviation from predicted accelerations of the Pioneer 10 and Pioneer 11 spacecraft after they passed about 20 astronomical units (3×10 km; 2×10 mi) on their trajectories out of the Solar System. The apparent anomaly was a matter of much interest for many years but has been subsequently explained by anisotropic radiation pressure caused by the spacecraft's heat loss.

Both Pioneer spacecraft are escaping the Solar System but are slowing under the influence of the Sun's gravity. Upon very close examination of navigational data, the spacecraft were found to be slowing slightly more than expected. The effect is an extremely small acceleration towards the Sun, of (8.74±1.33)×10 m/s, which is equivalent to a reduction of the outbound velocity by 1 km/h over a period of ten years. The two spacecraft were launched in 1972 and 1973. The anomalous acceleration was first noticed as early as 1980 but not seriously investigated until 1994. The last communication with either spacecraft was in 2003, but analysis of recorded data continues.

Various explanations, both of spacecraft behavior and of gravitation itself, were proposed to explain the anomaly. Over the period from 1998 to 2012, one particular explanation became accepted. The spacecraft, which are surrounded by an ultra-high vacuum and are each powered by a radioisotope thermoelectric generator (RTG), can shed heat only via thermal radiation. If, due to the design of the spacecraft, more heat is emitted in a particular direction by what is known as a radiative anisotropy, then the spacecraft would accelerate slightly in the direction opposite of the excess emitted radiation due to the recoil of thermal photons. If the excess radiation and attendant radiation pressure were pointed in a general direction opposite the Sun, the spacecraft's velocity away from the Sun would be decreasing at a rate greater than could be explained by previously recognized forces, such as gravity and trace friction due to the interplanetary medium (imperfect vacuum).

By 2012, several papers by different groups, all reanalyzing the thermal radiation pressure forces inherent in the spacecraft, showed that a careful accounting of this explains the entire anomaly; thus the cause is mundane and does not point to any new phenomenon or need to update the laws of physics. The most detailed analysis to date, by some of the original investigators, explicitly looks at two methods of estimating thermal forces, concluding that there is "no statistically significant difference between the two estimates and that once the thermal recoil force is properly accounted for, no anomalous acceleration remains."

Description

Pioneer 10 and 11 were sent on missions to Jupiter and Jupiter/Saturn respectively. Both spacecraft were spin-stabilised in order to keep their high-gain antennas pointed towards Earth using gyroscopic forces. Although the spacecraft included thrusters, after the planetary encounters they were used only for semiannual conical scanning maneuvers to track Earth in its orbit, leaving them on a long "cruise" phase through the outer Solar System. During this period, both spacecraft were repeatedly contacted to obtain various measurements on their physical environment, providing valuable information long after their initial missions were complete.

Because the spacecraft were flying with almost no additional stabilization thrusts during their "cruise", it is possible to characterize the density of the solar medium by its effect on the spacecraft's motion. In the outer Solar System this effect would be easily calculable, based on ground-based measurements of the deep space environment. When these effects were taken into account, along with all other known effects, the calculated position of the Pioneers did not agree with measurements based on timing the return of the radio signals being sent back from the spacecraft. These consistently showed that both spacecraft were closer to the inner Solar System than they should be, by thousands of kilometres—small compared to their distance from the Sun, but still statistically significant. This apparent discrepancy grew over time as the measurements were repeated, suggesting that whatever was causing the anomaly was still acting on the spacecraft.

As the anomaly was growing, it appeared that the spacecraft were moving more slowly than expected. Measurements of the spacecraft's speed using the Doppler effect demonstrated the same thing: the observed redshift was less than expected, which meant that the Pioneers had slowed down more than expected.

When all known forces acting on the spacecraft were taken into consideration, a very small but unexplained force remained. It appeared to cause an approximately constant sunward acceleration of (8.74±1.33)×10 m/s for both spacecraft. If the positions of the spacecraft were predicted one year in advance based on measured velocity and known forces (mostly gravity), they were actually found to be some 400 km closer to the sun at the end of the year. This anomaly is now believed to be accounted for by thermal recoil forces.

Explanation: thermal recoil force

Starting in 1998, there were suggestions that the thermal recoil force was underestimated, and perhaps could account for the entire anomaly. However, accurately accounting for thermal forces was hard, because it needed telemetry records of the spacecraft temperatures and a detailed thermal model, neither of which was available at the time. Furthermore, all thermal models predicted a decrease in the effect with time, which did not appear in the initial analysis.

One by one these objections were addressed. Many of the old telemetry records were found, and converted to modern formats. This gave power consumption figures and some temperatures for parts of the spacecraft. Several groups built detailed thermal models, which could be checked against the known temperatures and powers, and allowed a quantitative calculation of the recoil force. The longer span of navigational records showed the acceleration was in fact decreasing.

In July 2012, Slava Turyshev et al. published a paper in Physical Review Letters that explained the anomaly. The work explored the effect of the thermal recoil force on Pioneer 10, and concluded that "once the thermal recoil force is properly accounted for, no anomalous acceleration remains." Although the paper by Turyshev et al. has the most detailed analysis to date, the explanation based on thermal recoil force has the support of other independent research groups, using a variety of computational techniques. Examples include "thermal recoil pressure is not the cause of the Rosetta flyby anomaly but likely resolves the anomalous acceleration observed for Pioneer 10." and "It is shown that the whole anomalous acceleration can be explained by thermal effects".

Indications from other missions

The Pioneers were uniquely suited to discover the effect because they have been flying for long periods of time without additional course corrections. Most deep-space probes launched after the Pioneers either stopped at one of the planets, or used thrusting throughout their mission.

The Voyagers flew a mission profile similar to the Pioneers, but were not spin stabilized. Instead, they required frequent firings of their thrusters for attitude control to stay aligned with Earth. Spacecraft like the Voyagers acquire small and unpredictable changes in speed as a side effect of the frequent attitude control firings. This 'noise' makes it impractical to measure small accelerations such as the Pioneer effect; accelerations as large as 10 m/s would be undetectable.

Newer spacecraft have used spin stabilization for some or all of their mission, including both Galileo and Ulysses. These spacecraft indicate a similar effect, although for various reasons (such as their relative proximity to the Sun) firm conclusions cannot be drawn from these sources. The Cassini mission has reaction wheels as well as thrusters for attitude control, and during cruise could rely for long periods on the reaction wheels alone, thus enabling precision measurements. It also had radioisotope thermoelectric generators (RTGs) mounted close to the spacecraft body, radiating kilowatts of heat in hard-to-predict directions.

After Cassini arrived at Saturn, it shed a large fraction of its mass from the fuel used in the insertion burn and the release of the Huygens probe. This increases the acceleration caused by the radiation forces because they are acting on less mass. This change in acceleration allows the radiation forces to be measured independently of any gravitational acceleration. Comparing cruise and Saturn-orbit results shows that for Cassini, almost all the unmodelled acceleration was due to radiation forces, with only a small residual acceleration, much smaller than the Pioneer acceleration, and with opposite sign.

The non-gravitational acceleration of the deep space probe New Horizons has been measured at about 1.25×10 m/s sunward, somewhat larger than the effect on Pioneer. Modelling of thermal effects indicates an expected sunward acceleration of 1.15×10 m/s, and given the uncertainties, the acceleration appears consistent with thermal radiation as the source of the non-gravitational forces measured. The measured acceleration is slowly decreasing as would be expected from the decreasing thermal output of the RTG.

Potential issues with the thermal solution

There are two features of the anomaly, as originally reported, that are not addressed by the thermal solution: periodic variations in the anomaly, and the onset of the anomaly near the orbit of Saturn.

First, the anomaly has an apparent annual periodicity and an apparent Earth sidereal daily periodicity with amplitudes that are formally greater than the error budget. However, the same paper also states this problem is most likely not related to the anomaly: "The annual and diurnal terms are very likely different manifestations of the same modeling problem. Such a modeling problem arises when there are errors in any of the parameters of the spacecraft orientation with respect to the chosen reference frame."

Second, the value of the anomaly measured over a period during and after the Pioneer 11 Saturn encounter had a relatively high uncertainty and a significantly lower value. The Turyshev, et al. 2012 paper compared the thermal analysis to the Pioneer 10 only. The Pioneer anomaly was unnoticed until after Pioneer 10 passed its Saturn encounter. However, the most recent analysis states: "Figure 2 is strongly suggestive that the previously reported "onset" of the Pioneer anomaly may in fact be a simple result of mis-modeling of the solar thermal contribution; this question may be resolved with further analysis of early trajectory data".

Previously proposed explanations

Before the thermal recoil explanation became accepted, other proposed explanations fell into two classes—"mundane causes" or "new physics". Mundane causes include conventional effects that were overlooked or mis-modeled in the initial analysis, such as measurement error, thrust from gas leakage, or uneven heat radiation. The "new physics" explanations proposed revision of our understanding of gravitational physics.

If the Pioneer anomaly had been a gravitational effect due to some long-range modifications of the known laws of gravity, it did not affect the orbital motions of the major natural bodies in the same way (in particular those moving in the regions in which the Pioneer anomaly manifested itself in its presently known form). Hence a gravitational explanation would need to violate the equivalence principle, which states that all objects are affected the same way by gravity. It was therefore argued that increasingly accurate measurements and modelling of the motions of the outer planets and their satellites undermined the possibility that the Pioneer anomaly is a phenomenon of gravitational origin. However, others believed that our knowledge of the motions of the outer planets and dwarf planet Pluto was still insufficient to disprove the gravitational nature of the Pioneer anomaly. The same authors ruled out the existence of a gravitational Pioneer-type extra-acceleration in the outskirts of the Solar System by using a sample of Trans-Neptunian objects.

The magnitude of the Pioneer effect a p {\displaystyle a_{p}} ((8.74±1.33)×10 m/s) is numerically quite close to the product ((6.59±0.07)×10 m/s) of the speed of light c {\displaystyle c} and the Hubble constant H 0 {\displaystyle H_{0}} , hinting at a cosmological connection, but this is now believed to be of no particular significance. In fact the latest Jet Propulsion Laboratory review (2010) undertaken by Turyshev and Toth claims to rule out the cosmological connection by considering rather conventional sources whereas other scientists provided a disproof based on the physical implications of cosmological models themselves.

Gravitationally bound objects such as the Solar System, or even the Milky Way, are not supposed to partake of the expansion of the universe—this is known both from conventional theory and by direct measurement. This does not necessarily interfere with paths new physics can take with drag effects from planetary secular accelerations of possible cosmological origin.

Deceleration model

It has been viewed as possible that a real deceleration is not accounted for in the current model for several reasons.

Gravity

It is possible that deceleration is caused by gravitational forces from unidentified sources such as the Kuiper belt or dark matter. However, this acceleration does not show up in the orbits of the outer planets, so any generic gravitational answer would need to violate the equivalence principle (see modified inertia below). Likewise, the anomaly does not appear in the orbits of Neptune's moons, challenging the possibility that the Pioneer anomaly may be an unconventional gravitational phenomenon based on range from the Sun.

Drag

The cause could be drag from the interplanetary medium, including dust, solar wind and cosmic rays. However, the measured densities are too small to cause the effect.

Gas leaks

Gas leaks, including helium from the spacecraft's radioisotope thermoelectric generators (RTGs) have been thought as possible cause.

Observational or recording errors

The possibility of observational errors, which include measurement and computational errors, has been advanced as a reason for interpreting the data as an anomaly. Hence, this would result in approximation and statistical errors. However, further analysis has determined that significant errors are not likely because seven independent analyses have shown the existence of the Pioneer anomaly as of March 2010.

The effect is so small that it could be a statistical anomaly caused by differences in the way data were collected over the lifetime of the probes. Numerous changes were made over this period, including changes in the receiving instruments, reception sites, data recording systems and recording formats.

New physics

Because the "Pioneer anomaly" does not show up as an effect on the planets, Anderson et al. speculated that this would be interesting if this was new physics. Later, with the Doppler shifted signal confirmed, the team again speculated that one explanation may lie with new physics, if not some unknown systemic explanation.

Clock acceleration

Clock acceleration was an alternate explanation to anomalous acceleration of the spacecraft towards the Sun. This theory took notice of an expanding universe, which was thought to create an increasing background 'gravitational potential'. The increased gravitational potential would then accelerate cosmological time. It was proposed that this particular effect causes the observed deviation from predicted trajectories and velocities of Pioneer 10 and Pioneer 11.

From their data, Anderson's team deduced a steady frequency drift of 1.5 Hz over eight years. This could be mapped on to a clock acceleration theory, which meant all clocks would be changing in relation to a constant acceleration: in other words, that there would be a non-uniformity of time. Moreover, for such a distortion related to time, Anderson's team reviewed several models in which time distortion as a phenomenon is considered. They arrived at the "clock acceleration" model after completion of the review. Although the best model adds a quadratic term to defined International Atomic Time, the team encountered problems with this theory. This then led to non-uniform time in relation to a constant acceleration as the most likely theory.

Definition of gravity modified

The Modified Newtonian dynamics or MOND hypothesis proposed that the force of gravity deviates from the traditional Newtonian value to a very different force law at very low accelerations on the order of 10 m/s. Given the low accelerations placed on the spacecraft while in the outer Solar System, MOND may be in effect, modifying the normal gravitational equations. The Lunar Laser Ranging experiment combined with data of LAGEOS satellites refutes that simple gravity modification is the cause of the Pioneer anomaly. The precession of the longitudes of perihelia of the solar planets or the trajectories of long-period comets have not been reported to experience an anomalous gravitational field toward the Sun of the magnitude capable of describing the Pioneer anomaly.

Definition of inertia modified

MOND can also be interpreted as a modification of inertia, perhaps due to an interaction with vacuum energy, and such a trajectory-dependent theory could account for the different accelerations apparently acting on the orbiting planets and the Pioneer craft on their escape trajectories. A possible terrestrial test for evidence of a different model of modified inertia has also been proposed.

Parametric time

Another theoretical explanation was based on a possible non-equivalence of the atomic time and the astronomical time, which could give the same observational fingerprint as the anomaly.

Celestial ephemerides in an expanding universe

Another proposed explanation of Pioneer anomaly is that the background spacetime is described by a cosmological Friedmann–Lemaître–Robertson–Walker metric that is not Minkowski flat. In this model of spacetime manifold, light moves uniformly with respect to the conformal cosmological time whereas physical measurements are performed with the help of atomic clocks that count the proper time of observer coinciding with the cosmic time. This difference yields exactly the same numerical value and signature of the Doppler shift measured in the Pioneer experiment. However, this explanation requires the thermal effects be a small percentage of the total, in contradiction to the many studies that estimate it to be the bulk of the effect.

Further research avenues

It is possible, but not proven, that this anomaly is linked to the flyby anomaly, which has been observed in other spacecraft. Although the circumstances are very different (planet flyby vs. deep space cruise), the overall effect is similar—a small but unexplained velocity change is observed on top of a much larger conventional gravitational acceleration.

The Pioneer spacecraft are no longer providing new data (the last contact was on 23 January 2003) and other deep-space missions that might be studied (Galileo and Cassini) were deliberately disposed of in the atmospheres of Jupiter and Saturn respectively at the ends of their missions. This leaves several remaining options for further research:

  • Further analysis of the retrieved Pioneer data. This includes not only the data that was first used to detect the anomaly, but additional data that until recently was saved only in older, inaccessible computer formats and media. This data was recovered in 2006, converted to more modern formats, and is now available for analysis.
  • The New Horizons spacecraft to Pluto is spin-stabilised for long intervals, and there were proposals to use it to investigate the anomaly. It was known that New Horizons would have the same problem that precluded good data from the cruise portion of Cassini mission—its RTG is mounted close to the spacecraft body, so thermal radiation from it, bouncing off the spacecraft, will produce a systematic thrust of a not-easily predicted magnitude, as large or larger than the Pioneer effect. However, it was hoped that despite any large systematic bias from the RTG, the 'onset' of the anomaly at or near the orbit of Saturn might be observed.
  • A dedicated mission has also been proposed. Such a mission would probably need to surpass 200 AU from the Sun in a hyperbolic escape orbit.
  • Observations of asteroids around 20 AU may provide insights if the anomaly's cause is gravitational.

Meetings and conferences about the anomaly

A meeting was held at the University of Bremen in 2004 to discuss the Pioneer anomaly.

The Pioneer Explorer Collaboration was formed to study the Pioneer Anomaly and has hosted three meetings (2005, 2007, and 2008) at International Space Science Institute in Bern, Switzerland, to discuss the anomaly, and discuss possible means for resolving the source.

Notes

  1. non-uniform time in relation to a constant acceleration is a summarized term derived from the source or sources used for this sub-section.

See also

References

  1. Nieto, M. M.; Turyshev, S. G. (2004). "Finding the Origin of the Pioneer Anomaly". Classical and Quantum Gravity. 21 (17): 4005–4024. arXiv:gr-qc/0308017. Bibcode:2004CQGra..21.4005N. CiteSeerX 10.1.1.338.6163. doi:10.1088/0264-9381/21/17/001. S2CID 250852698.
  2. "Pioneer Anomaly Solved By 1970s Computer Graphics Technique". The Physics arXiv Blog. March 31, 2011. Archived from the original on January 11, 2012. Retrieved May 5, 2015.
  3. ^ Rievers, B.; Lämmerzahl, C. (2011). "High precision thermal modeling of complex systems with application to the flyby and Pioneer anomaly". Annalen der Physik. 523 (6): 439. arXiv:1104.3985. Bibcode:2011AnP...523..439R. doi:10.1002/andp.201100081.
  4. ^ Turyshev, S. G.; Toth, V. T.; Kinsella, G.; Lee, S.-C.; Lok, S. M.; Ellis, J. (2012). "Support for the Thermal Origin of the Pioneer Anomaly". Physical Review Letters. 108 (24): 241101. arXiv:1204.2507. Bibcode:2012PhRvL.108x1101T. doi:10.1103/PhysRevLett.108.241101. PMID 23004253. S2CID 2368665.
  5. "Pioneer 10". Weebau Spaceflight Encyclopedia. November 9, 2010. Retrieved January 11, 2012.
  6. Murphy, E. M. (1999). "A Prosaic explanation for the anomalous accelerations seen in distant spacecraft". Physical Review Letters. 83 (9): 1890. arXiv:gr-qc/9810015. Bibcode:1999PhRvL..83.1890M. doi:10.1103/PhysRevLett.83.1890. S2CID 26202138.
  7. Katz, J. I. (1999). "Comment on "Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration"". Physical Review Letters. 83 (9): 1892. arXiv:gr-qc/9809070. Bibcode:1999PhRvL..83.1892K. doi:10.1103/PhysRevLett.83.1892. S2CID 3012441.
  8. Scheffer, L. (2003). "Conventional forces can explain the anomalous acceleration of Pioneer 10". Physical Review D. 67 (8): 084021. arXiv:gr-qc/0107092. Bibcode:2003PhRvD..67h4021S. doi:10.1103/PhysRevD.67.084021. S2CID 119504342.
  9. ^ See pp. 10–15 in Turyshev, S. G; Toth, V. T.; Kellogg, L.; Lau, E.; Lee, K. (2006). "A study of the pioneer anomaly: new data and objectives for new investigation". International Journal of Modern Physics D. 15 (1): 1–55. arXiv:gr-qc/0512121. Bibcode:2006IJMPD..15....1T. doi:10.1142/S0218271806008218. S2CID 15865239.
  10. Bertolami, O.; Francisco, F.; Gil, P. J. S.; Páramos, J. (2008). "Thermal analysis of the Pioneer anomaly: A method to estimate radiative momentum transfer". Physical Review D. 78 (10): 103001. arXiv:0807.0041. Bibcode:2008PhRvD..78j3001B. doi:10.1103/PhysRevD.78.103001. S2CID 118543543.
  11. Toth, V. T.; Turyshev, S. G. (2009). "Thermal recoil force, telemetry, and the Pioneer anomaly". Physical Review D. 79 (4): 043011. arXiv:0901.4597. Bibcode:2009PhRvD..79d3011T. doi:10.1103/PhysRevD.79.043011. S2CID 118415031.
  12. Turyshev, S. G.; Toth, V. T.; Ellis, J.; Markwardt, C. B. (2011). "Support for temporally varying behavior of the Pioneer anomaly from the extended Pioneer 10 and 11 Doppler data sets". Physical Review Letters. 107 (8): 81103. arXiv:1107.2886. Bibcode:2011PhRvL.107h1103T. doi:10.1103/PhysRevLett.107.081103. PMID 21929157. S2CID 26207540.
  13. Bertolami, O.; Francisco, F.; Gil, P. J. S.; Páramos, J. (2012). "The Contribution of Thermal Effects to the Acceleration of the Deep-Space Pioneer Spacecraft". Physical Review Letters. 107 (8): 081103. arXiv:1107.2886. Bibcode:2011PhRvL.107h1103T. doi:10.1103/PhysRevLett.107.081103. PMID 21929157. S2CID 26207540.
  14. ^ Turyshev, S. G.; Toth, V. T. (2010). "The Pioneer Anomaly". Living Reviews in Relativity. 13 (1): 4. arXiv:1001.3686. Bibcode:2010LRR....13....4T. doi:10.12942/lrr-2010-4. PMC 5255541. PMID 28163614.
  15. Turyshev, S. G.; Nieto, M. M.; Anderson, J. D. (2005). "A Route to Understanding of the Pioneer Anomaly". In Chen, P.; Bloom, E.; Madejski, G.; Petrosian, V. (eds.). The XXII Texas Symposium on Relativistic Astrophysics. Vol. 2004. pp. 13–17. arXiv:gr-qc/0503021. Bibcode:2005tsra.conf..121T. Stanford e-Conf #C04, paper #0310.In particular, Appendix C.
  16. Di Benedetto, M.; Iess, L.; Roth, D. C. (2009). "The non-gravitational accelerations of the Cassini spacecraft" (PDF). Proceedings of the 21st International Symposium on Space Flight Dynamics. International Symposium on Space Flight Dynamics. Archived from the original (PDF) on April 26, 2014. Retrieved March 27, 2011.
  17. Iess, L. (January 2011). "Deep-Space Navigation: a Tool to Investigate the Laws of Gravity" (PDF). Institut des Hautes Études Scientifiques.
  18. G. D. Rogers, S. H. Flanigan, and D. Stanbridge (2014). "Effects of radioisotope thermoelectric generator on dynamics of the New Horizons spacecraft". Advances in the Astronautical Sciences (151): 801.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. André G. C. Guerra, Frederico Francisco, Paulo J. S. Gil, and Orfeu Bertolami (June 16, 2017). "Estimating the thermally induced acceleration of the New Horizons spacecraft". Phys. Rev. D. 95 (12): 124027. arXiv:1703.05831. Bibcode:2017PhRvD..95l4027G. doi:10.1103/PhysRevD.95.124027. S2CID 119447205.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. ^ Anderson, J. D.; et al. (2002). "Study of the anomalous acceleration of Pioneer 10 and 11". Physical Review D. 65 (8): 082004. arXiv:gr-qc/0104064. Bibcode:2002PhRvD..65h2004A. doi:10.1103/PhysRevD.65.082004. S2CID 92994412.
  21. Nieto, M. M.; Anderson, J. D. (2005). "Using early data to illuminate the Pioneer anomaly". Classical and Quantum Gravity. 22 (24): 5343–5354. arXiv:gr-qc/0507052. Bibcode:2005CQGra..22.5343N. CiteSeerX 10.1.1.339.8927. doi:10.1088/0264-9381/22/24/008. S2CID 15534323.
  22. Tangen, K. (2007). "Could the Pioneer anomaly have a gravitational origin?". Physical Review D. 76 (4): 042005. arXiv:gr-qc/0602089. Bibcode:2007PhRvD..76d2005T. doi:10.1103/PhysRevD.76.042005. S2CID 50857639.
  23. Iorio, L.; Giudice, G. (2006). "What do the orbital motions of the outer planets of the Solar System tell us about the Pioneer anomaly?". New Astronomy. 11 (8): 600–607. arXiv:gr-qc/0601055. Bibcode:2006NewA...11..600I. doi:10.1016/j.newast.2006.04.001. S2CID 9371694.
  24. ^ Iorio, L. (2007). "Can the Pioneer anomaly be of gravitational origin? A phenomenological answer". Foundations of Physics. 37 (6): 897–918. arXiv:gr-qc/0610050. Bibcode:2007FoPh...37..897I. doi:10.1007/s10701-007-9132-x. S2CID 12233918.
  25. Iorio, L. (2007). "Jupiter, Saturn and the Pioneer anomaly: a planetary-based independent test". Journal of Gravitational Physics. 1 (1): 5–8. arXiv:0712.1273. Bibcode:2007JGrPh...1....5I.
  26. Standish, E. M. (2008). "Planetary and Lunar Ephemerides: testing alternate gravitational theories". AIP Conference Proceedings. 977: 254–263. Bibcode:2008AIPC..977..254S. doi:10.1063/1.2902789.
  27. Iorio, L. (2008). The Lense–Thirring Effect and the Pioneer Anomaly: Solar System Tests. The Eleventh Marcel Grossmann Meeting. Vol. 11. pp. 2558–2560. arXiv:gr-qc/0608105. Bibcode:2008mgm..conf.2558I. CiteSeerX 10.1.1.338.8576. doi:10.1142/9789812834300_0458. ISBN 978-981-283-426-3. S2CID 119426961.
  28. Iorio, L. (2009). "Can the Pioneer Anomaly be Induced by Velocity-Dependant Forces? Tests in the Outer Regions of the Solar System with Planetary Dynamics". International Journal of Modern Physics D. 18 (6): 947–958. arXiv:0806.3011. Bibcode:2009IJMPD..18..947I. doi:10.1142/S0218271809014856. S2CID 14391444.
  29. Fienga, A.; et al. (2009). "Gravity tests with INPOP planetary ephemerides" (PDF). Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics: 105–109. Bibcode:2009sf2a.conf..105F. Archived from the original (PDF) on July 20, 2011. Also published in Fienga, A.; Laskar, J.; Kuchynka, P.; Leponcin-Lafitte, C.; Manche, H.; Gastineau, M. (2010). Proceedings of the International Astronomical Union. 5: 159–169. arXiv:0906.3962. Bibcode:2010IAUS..261..159F. doi:10.1017/S1743921309990330. S2CID 16594016.{{cite journal}}: CS1 maint: untitled periodical (link)
  30. ^ Iorio, L. (2010). "Does the Neptunian system of satellites challenge a gravitational origin for the Pioneer anomaly?". Monthly Notices of the Royal Astronomical Society. 405 (4): 2615–2622. arXiv:0912.2947. Bibcode:2010MNRAS.405.2615I. doi:10.1111/j.1365-2966.2010.16637.x.
  31. Pitjeva, E. V. (2010). "EPM ephemerides and relativity". Proceedings of the International Astronomical Union. 5: 170–178. Bibcode:2010IAUS..261..170P. doi:10.1017/S1743921309990342.
  32. Page, G. L.; Wallin, J. F.; Dixon, D. S. (2009). "How Well do We Know the Orbits of the Outer Planets?". The Astrophysical Journal. 697 (2): 1226–1241. arXiv:0905.0030. Bibcode:2009ApJ...697.1226P. doi:10.1088/0004-637X/697/2/1226.
  33. ^ Page, G. L.; Dixon, D. S.; Wallin, J. F. (2006). "Can Minor Planets Be Used to Assess Gravity in the Outer Solar System?". The Astrophysical Journal. 642 (1): 606–614. arXiv:astro-ph/0504367. Bibcode:2006ApJ...642..606P. doi:10.1086/500796.
  34. Wallin, J. F.; Dixon, D. S.; Page, G. L. (2007). "Testing Gravity in the Outer Solar System: Results from Trans-Neptunian Objects". The Astrophysical Journal. 666 (2): 1296–1302. arXiv:0705.3408. Bibcode:2007ApJ...666.1296W. doi:10.1086/520528.
  35. Mizony, M.; Lachièze-Rey, M. (2005). "Cosmological effects in the local static frame". Astronomy and Astrophysics. 434 (1): 45–52. arXiv:gr-qc/0412084. Bibcode:2005A&A...434...45M. doi:10.1051/0004-6361:20042195.
  36. Lachièze-Rey, M. (2007). "Cosmology in the solar system: the Pioneer effect is not cosmological". Classical and Quantum Gravity. 24 (10): 2735–2742. arXiv:gr-qc/0701021. Bibcode:2007CQGra..24.2735L. doi:10.1088/0264-9381/24/10/016. S2CID 15405671.
  37. Noerdlinger, P. D.; Petrosian, V. (1971). "The Effect of Cosmological Expansion on Self-Gravitating Ensembles of Particles". Astrophysical Journal. 168: 1. Bibcode:1971ApJ...168....1N. doi:10.1086/151054.
  38. Williams, J. G.; Turyshev, S. G.; Boggs, D. H. (2004). "Progress in Lunar Laser Ranging Tests of Relativistic Gravity" (PDF). Physical Review Letters. 93 (26): 261101. arXiv:gr-qc/0411113. Bibcode:2004PhRvL..93z1101W. doi:10.1103/PhysRevLett.93.261101. PMID 15697965. S2CID 119358769. Archived from the original (PDF) on September 29, 2006.
  39. Turyshev, Slava G., John D. Anderson, Philip A. Laing, Eunice L. Lau, Anthony S. Liu, and Michael Martin Nieto (1999). "The apparent anomalous, weak, long-range acceleration of Pioneer 10 and 11."". arXiv:gr-qc/9903024.{{cite arXiv}}: CS1 maint: multiple names: authors list (link) "As stated before, we believe the most plausible explanation of the anomaly is systematics, such as radiant heat or gas leaks".
  40. Turyshev, S. G. (March 28, 2007). "Pioneer Anomaly Project Update: A Letter From the Project Director". The Planetary Society. Archived from the original on December 30, 2010. Retrieved February 12, 2011.
  41. ^ Rañada, A. F. (2005). "The Pioneer anomaly as acceleration of the clocks". Foundations of Physics. 34 (12): 1955–1971. arXiv:gr-qc/0410084. Bibcode:2004FoPh...34.1955R. doi:10.1007/s10701-004-1629-y. S2CID 3066011.
  42. Bekenstein, J. D. (2006). "The modified Newtonian dynamics (MOND) and its implications for new physics". Contemporary Physics. 47 (6): 387. arXiv:astro-ph/0701848. Bibcode:2006ConPh..47..387B. doi:10.1080/00107510701244055. S2CID 44002446.
  43. Exirifard, Q. (2010). "Constraints on f(RijklR) gravity: Evidence against the co-variant resolution of the Pioneer anomaly". Classical and Quantum Gravity. 26 (2): 025001. arXiv:0708.0662. Bibcode:2009CQGra..26b5001E. doi:10.1088/0264-9381/26/2/025001. S2CID 119304817.
  44. Nieto, M. M.; Turyshev, S. G.; Anderson, J. D. (2005). "Directly measured limit on the interplanetary matter density from Pioneer 10 and 11". Physics Letters B. 613 (1–2): 11. arXiv:astro-ph/0501626. Bibcode:2005PhLB..613...11N. doi:10.1016/j.physletb.2005.03.035.
  45. Milgrom, M. (1999). "The Modified Dynamics as a vacuum effect". Physics Letters A. 253 (5–6): 273. arXiv:astro-ph/9805346. Bibcode:1999PhLA..253..273M. CiteSeerX 10.1.1.336.5489. doi:10.1016/S0375-9601(99)00077-8. S2CID 17743418.
  46. Ignatiev, A. Yu. (2007). "Is violation of Newton's second law possible?". Physical Review Letters. 98 (10): 101101. arXiv:gr-qc/0612159. Bibcode:2007PhRvL..98j1101I. doi:10.1103/PhysRevLett.98.101101. PMID 17358522. S2CID 1141443.
  47. Rañada, A. F.; Tiemblo, A. (2012). "Parametric invariance and the Pioneer anomaly" (PDF). Canadian Journal of Physics. 90 (10): 931–937. arXiv:1106.4400. Bibcode:2012CaJPh..90..931R. doi:10.1139/p2012-086. Antonio Fernández-Rañada and Alfredo Tiemblo-Ramos propose "an explanation of the Pioneer anomaly that is a refinement of a previous one and is fully compatible with the cartography of the solar system. It is based on the non-equivalence of the atomic time and the astronomical time that happens to have the same observational fingerprint as the anomaly."
  48. Kopeikin, S. M. (2012). "Celestial Ephemerides in an Expanding Universe". Physical Review D. 86 (6): 064004. arXiv:1207.3873. Bibcode:2012PhRvD..86f4004K. doi:10.1103/PhysRevD.86.064004. S2CID 118822571.
  49. Choi, C. Q. (March 3, 2008). "NASA Baffled by Unexplained Force Acting on Space Probes". Space.com. Retrieved February 12, 2011.
  50. "The Pioneer Missions". NASA. July 26, 2003. Retrieved May 7, 2015.
  51. "Data Saved!". Planetary Society. June 1, 2006. Archived from the original on April 18, 2012.
  52. Nieto, M. M. (2008). "New Horizons and the Onset of the Pioneer Anomaly". Physics Letters B. 659 (3): 483–485. arXiv:0710.5135. Bibcode:2008PhLB..659..483N. doi:10.1016/j.physletb.2007.11.067.
  53. "Pioneer anomaly put to the test". Physics World. September 1, 2004. Archived from the original on April 4, 2012. Retrieved May 17, 2009.
  54. Clark, S. (May 10, 2005). "Lost asteroid clue to Pioneer puzzle". New Scientist. Retrieved January 10, 2009.
  55. "Conference on The Pioneer Anomaly - Observations, Attempts at Explanation, Further Exploration". Center of Applied Space Technology and Microgravity. Retrieved February 12, 2012.
  56. "The Pioneer Explorer Collaboration: Investigation of the Pioneer Anomaly at ISSI". International Space Science Institute. February 18, 2008. Retrieved May 7, 2015.

Further reading

The original paper describing the anomaly
A lengthy survey of several years of debate by the authors of the original 1998 paper documenting the anomaly. The authors conclude, "Until more is known, we must admit that the most likely cause of this effect is an unknown systematic. (We ourselves are divided as to whether 'gas leaks' or 'heat' is this 'most likely cause.')"

The ISSI meeting above has an excellent reference list divided into sections such as primary references, attempts at explanation, proposals for new physics, possible new missions, popular press, and so on. A sampling of these are shown here:

Further elaboration on a dedicated mission plan (restricted access)
Popular press

External links

Pioneer program
Early missions
Pioneer 11 at Saturn
Pioneer 11 at Saturn
Later missions
Venus missions
Related
Categories: